Spatio-temporal models by wavelets
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45133/tde-25052023-222701/ |
Resumo: | The space-time autoregressive moving average model is one of the models that is frequently used in several studies of multivariate time series data. In time series analysis, the assumption of stationarity is important, but it is not always guaranteed in practice and one way to proceed is to consider the locally stationary process. In this thesis we propose a time-varying spatio-temporal model based on the local stationarity assumption. The time-varying parameters are expanded as a linear combination of the wavelet bases and some estimation procedures are used to estimate the coefficients. Some simulations were realized to study the performance of the algorithm and the effects of different types of the spatial weights matrices. And then, an application to historical daily precipitation records of Midwestern states of the USA is illustrated. For the non stationary case, a procedure for estimating the non stationary spatial covariance function for spatio-temporal deformation was proposed. The procedure is based on a monotonic function approach and the functions are expanded using wavelet bases. The deformation proposed guarantees a injective transformation. That is, two distinct locations in the geographic plane are not mapped into the same point in the deformation plane. Finally, some simulations and an application to historical daily maximum temperature records are illustrated. |
| id |
USP_b298d711b82efaff2d079dfe58d56dca |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-25052023-222701 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Spatio-temporal models by waveletsModelos espaciais temporais via ondaletasEspaço-temporalFiltro de KalmanFunção de covariância espacialKalman filterLocally stationary processesNon stationary processesOndaletasProcessos localmente estacionáriosProcessos não estacionáriosSpatial covariance functionSpatio-temporalTime-varyingVariante no tempoWaveletsThe space-time autoregressive moving average model is one of the models that is frequently used in several studies of multivariate time series data. In time series analysis, the assumption of stationarity is important, but it is not always guaranteed in practice and one way to proceed is to consider the locally stationary process. In this thesis we propose a time-varying spatio-temporal model based on the local stationarity assumption. The time-varying parameters are expanded as a linear combination of the wavelet bases and some estimation procedures are used to estimate the coefficients. Some simulations were realized to study the performance of the algorithm and the effects of different types of the spatial weights matrices. And then, an application to historical daily precipitation records of Midwestern states of the USA is illustrated. For the non stationary case, a procedure for estimating the non stationary spatial covariance function for spatio-temporal deformation was proposed. The procedure is based on a monotonic function approach and the functions are expanded using wavelet bases. The deformation proposed guarantees a injective transformation. That is, two distinct locations in the geographic plane are not mapped into the same point in the deformation plane. Finally, some simulations and an application to historical daily maximum temperature records are illustrated.O modelo autoregressivo e média móvel espaço-temporal é um dos modelos frequentemente utilizados em diversos estudos de séries temporais multivariadas. Nesta análise, a suposição de estacionariedade é importante, mas nem sempre é garantida na prática e uma forma de proceder é considerar o processo localmente estacionário. Nesta tese propomos um modelo espaço-temporal variando no tempo, baseado na suposição de estacionariedade local. Os parâmetros variando no tempo são expandidos como uma combinação linear de ondaletas e alguns procedimentos de estimação são usados para estimar os coeficientes. Simulações são realizadas para estudar o desempenho do algoritmo e os efeitos dos diferentes tipos de matrizes de pesos espaciais. Em seguida, é ilustrada uma aplicação aos registros históricos diários de precipitação dos estados do meio-oeste dos EUA. Para o caso não estacionário, propomos um procedimento para estimar a função de covariância espacial não estacionária e estudamos o problema de deformação no espaço e tempo. O procedimento é baseado em uma abordagem de função monótona e as funções são expandidas usando bases de ondaletas. A deformação proposta garante uma transformação injetiva. Ou seja, duas localizações distintas no plano geográfico não são mapeadas no mesmo ponto no plano deformado. Por fim, simulações e uma aplicação aos registros históricos diários de temperatura máxima são ilustradas.Biblioteca Digitais de Teses e Dissertações da USPDias, RonaldoMorettin, Pedro AlbertoChen, Yangyang2023-04-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45133/tde-25052023-222701/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-16T21:40:02Zoai:teses.usp.br:tde-25052023-222701Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T21:40:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Spatio-temporal models by wavelets Modelos espaciais temporais via ondaletas |
| title |
Spatio-temporal models by wavelets |
| spellingShingle |
Spatio-temporal models by wavelets Chen, Yangyang Espaço-temporal Filtro de Kalman Função de covariância espacial Kalman filter Locally stationary processes Non stationary processes Ondaletas Processos localmente estacionários Processos não estacionários Spatial covariance function Spatio-temporal Time-varying Variante no tempo Wavelets |
| title_short |
Spatio-temporal models by wavelets |
| title_full |
Spatio-temporal models by wavelets |
| title_fullStr |
Spatio-temporal models by wavelets |
| title_full_unstemmed |
Spatio-temporal models by wavelets |
| title_sort |
Spatio-temporal models by wavelets |
| author |
Chen, Yangyang |
| author_facet |
Chen, Yangyang |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Dias, Ronaldo Morettin, Pedro Alberto |
| dc.contributor.author.fl_str_mv |
Chen, Yangyang |
| dc.subject.por.fl_str_mv |
Espaço-temporal Filtro de Kalman Função de covariância espacial Kalman filter Locally stationary processes Non stationary processes Ondaletas Processos localmente estacionários Processos não estacionários Spatial covariance function Spatio-temporal Time-varying Variante no tempo Wavelets |
| topic |
Espaço-temporal Filtro de Kalman Função de covariância espacial Kalman filter Locally stationary processes Non stationary processes Ondaletas Processos localmente estacionários Processos não estacionários Spatial covariance function Spatio-temporal Time-varying Variante no tempo Wavelets |
| description |
The space-time autoregressive moving average model is one of the models that is frequently used in several studies of multivariate time series data. In time series analysis, the assumption of stationarity is important, but it is not always guaranteed in practice and one way to proceed is to consider the locally stationary process. In this thesis we propose a time-varying spatio-temporal model based on the local stationarity assumption. The time-varying parameters are expanded as a linear combination of the wavelet bases and some estimation procedures are used to estimate the coefficients. Some simulations were realized to study the performance of the algorithm and the effects of different types of the spatial weights matrices. And then, an application to historical daily precipitation records of Midwestern states of the USA is illustrated. For the non stationary case, a procedure for estimating the non stationary spatial covariance function for spatio-temporal deformation was proposed. The procedure is based on a monotonic function approach and the functions are expanded using wavelet bases. The deformation proposed guarantees a injective transformation. That is, two distinct locations in the geographic plane are not mapped into the same point in the deformation plane. Finally, some simulations and an application to historical daily maximum temperature records are illustrated. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-04-26 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-25052023-222701/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-25052023-222701/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258439983562752 |