Aspectos de Teoria de Campos e Mecânica Estatística
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/43/43134/tde-23092014-160546/ |
Resumo: | A teoria quântica de campos pode ser vista como um conjunto de métodos e idéias que além de sua importância no estudo das partículas elementares, tem sido amplamente usada em outras áreas. Em especial, ela constitui uma ferramenta indispensável no estudo moderno de transições de fases e fenômenos críticos. A origem dessa constante relação entre a teoria de campos e a matéria condensada deve-se ao fato que, apesar de suas diferenças superficiais, ambas tratam de problemas envolvendo um grande número de graus de liberdade. Assim, não é surpreendente que as mesmas técnicas possam ser úteis nos dois campos. Este trabalho trata de problemas nessas duas áreas e está essencialmente divido em duas partes. A primeira parte é dedicada ao estudo de teorias de campos com uma anisotropia entre o espaço e o tempo, o que implica uma quebra da simetria de Lorentz. Uma das motivações para considerar esse tipo de teoria vem justamente do estudo de transições de fase em sistemas da matéria condensada. Análises do grupo de renormalização com ênfase na possibilidade de restauração da simetria de Lorentz e também uma discussão sobre identidades de Ward são realizadas. Na segunda parte, a atenção é voltada para a mecânica estatística mas com uma abordagem típica da teoria de campos, em especial, voltada para o estudo de transições de fase clássicas e quânticas a partir da versão quantizada do modelo esférico e de sua extensão supersimétrica. |
| id |
USP_b6009bfb5fc08a0d81c168a25d527915 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-23092014-160546 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Aspectos de Teoria de Campos e Mecânica EstatísticaAspects of Field Theory and Statistical MechanicsGrupo de RenormalizaçãoIdentidades de WardIsing ModelLorentz SymmetryModelo de IsingModelo EsféricoPhase TransitionsRenormalization GroupSimetria de LorentzSpherical ModelTransições de FaseWard IdentitiesA teoria quântica de campos pode ser vista como um conjunto de métodos e idéias que além de sua importância no estudo das partículas elementares, tem sido amplamente usada em outras áreas. Em especial, ela constitui uma ferramenta indispensável no estudo moderno de transições de fases e fenômenos críticos. A origem dessa constante relação entre a teoria de campos e a matéria condensada deve-se ao fato que, apesar de suas diferenças superficiais, ambas tratam de problemas envolvendo um grande número de graus de liberdade. Assim, não é surpreendente que as mesmas técnicas possam ser úteis nos dois campos. Este trabalho trata de problemas nessas duas áreas e está essencialmente divido em duas partes. A primeira parte é dedicada ao estudo de teorias de campos com uma anisotropia entre o espaço e o tempo, o que implica uma quebra da simetria de Lorentz. Uma das motivações para considerar esse tipo de teoria vem justamente do estudo de transições de fase em sistemas da matéria condensada. Análises do grupo de renormalização com ênfase na possibilidade de restauração da simetria de Lorentz e também uma discussão sobre identidades de Ward são realizadas. Na segunda parte, a atenção é voltada para a mecânica estatística mas com uma abordagem típica da teoria de campos, em especial, voltada para o estudo de transições de fase clássicas e quânticas a partir da versão quantizada do modelo esférico e de sua extensão supersimétrica.Quantum field theory can be seen as a set of methods and ideas that, besides its importance in the study of the elementary particles, has been widely used in other areas. In particular, it constitutes an indispensable framework in the modern approach to phase transitions and critical phenomena. The origin of this constant relationship between field theory and condensed matter is due to the fact that despite their superficial differences, both deal with problems involving a large number of degrees of freedom. Thus, it is not surprising that the same techniques may be useful in both fields. This work addresses problems in these two areas and it is essentially divided in two parts. The first part is devoted to the study of field theories with an anisotropy between space and time, which implies a breaking of the Lorentz symmetry. One of the moti- vations for considering this kind of theory is precisely the study of phase transitions in condensed matter systems. Renormalization group analysis with emphasis on the possi- bility of restoration of the Lorentz symmetry and also a discussion about Ward identities are performed. In the second part, the attention is centered on statistical mechanics but with an approach typical of field theory, in particular, focused to the study of classical and quantum phase transitions from the quantized version of the spherical model and its supersymmetric extension.Biblioteca Digitais de Teses e Dissertações da USPGomes, Marcelo Otavio CaminhaGomes, Pedro Rogério Sergi2013-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-23092014-160546/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-23092014-160546Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Aspectos de Teoria de Campos e Mecânica Estatística Aspects of Field Theory and Statistical Mechanics |
| title |
Aspectos de Teoria de Campos e Mecânica Estatística |
| spellingShingle |
Aspectos de Teoria de Campos e Mecânica Estatística Gomes, Pedro Rogério Sergi Grupo de Renormalização Identidades de Ward Ising Model Lorentz Symmetry Modelo de Ising Modelo Esférico Phase Transitions Renormalization Group Simetria de Lorentz Spherical Model Transições de Fase Ward Identities |
| title_short |
Aspectos de Teoria de Campos e Mecânica Estatística |
| title_full |
Aspectos de Teoria de Campos e Mecânica Estatística |
| title_fullStr |
Aspectos de Teoria de Campos e Mecânica Estatística |
| title_full_unstemmed |
Aspectos de Teoria de Campos e Mecânica Estatística |
| title_sort |
Aspectos de Teoria de Campos e Mecânica Estatística |
| author |
Gomes, Pedro Rogério Sergi |
| author_facet |
Gomes, Pedro Rogério Sergi |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Gomes, Marcelo Otavio Caminha |
| dc.contributor.author.fl_str_mv |
Gomes, Pedro Rogério Sergi |
| dc.subject.por.fl_str_mv |
Grupo de Renormalização Identidades de Ward Ising Model Lorentz Symmetry Modelo de Ising Modelo Esférico Phase Transitions Renormalization Group Simetria de Lorentz Spherical Model Transições de Fase Ward Identities |
| topic |
Grupo de Renormalização Identidades de Ward Ising Model Lorentz Symmetry Modelo de Ising Modelo Esférico Phase Transitions Renormalization Group Simetria de Lorentz Spherical Model Transições de Fase Ward Identities |
| description |
A teoria quântica de campos pode ser vista como um conjunto de métodos e idéias que além de sua importância no estudo das partículas elementares, tem sido amplamente usada em outras áreas. Em especial, ela constitui uma ferramenta indispensável no estudo moderno de transições de fases e fenômenos críticos. A origem dessa constante relação entre a teoria de campos e a matéria condensada deve-se ao fato que, apesar de suas diferenças superficiais, ambas tratam de problemas envolvendo um grande número de graus de liberdade. Assim, não é surpreendente que as mesmas técnicas possam ser úteis nos dois campos. Este trabalho trata de problemas nessas duas áreas e está essencialmente divido em duas partes. A primeira parte é dedicada ao estudo de teorias de campos com uma anisotropia entre o espaço e o tempo, o que implica uma quebra da simetria de Lorentz. Uma das motivações para considerar esse tipo de teoria vem justamente do estudo de transições de fase em sistemas da matéria condensada. Análises do grupo de renormalização com ênfase na possibilidade de restauração da simetria de Lorentz e também uma discussão sobre identidades de Ward são realizadas. Na segunda parte, a atenção é voltada para a mecânica estatística mas com uma abordagem típica da teoria de campos, em especial, voltada para o estudo de transições de fase clássicas e quânticas a partir da versão quantizada do modelo esférico e de sua extensão supersimétrica. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-02-15 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-23092014-160546/ |
| url |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-23092014-160546/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258475908825088 |