Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/18/18132/tde-06032014-103252/ |
Resumo: | A Barragem de Itaipu é uma obra de engenharia de grande importância. Localizada na fronteira entre o Brasil e o Paraguai no Rio Paraná e com coordenadas geográficas aproximadas 25°24\'29\"S, 54°35\'21\"O, ela fornece energia elétrica a estes dois países e deve ser constantemente monitorada de modo a manter níveis de qualidade e segurança. Mais de dois mil instrumentos foram instalados e fornecem dados contínuos sobre diversas características da fundação e estrutura da barragem, incluindo mais de 650 piezômetros. A avaliação de níveis piezométricos em barragens é importante, pois refletem os valores de subpressão que atuam na estrutura da barragem. A utilização de novos métodos em tais análises pode permitir agilidade na tomada de decisões por parte da equipe de segurança de barragens. Dependendo do método aplicado, uma melhor compreensão do fenômeno no tempo e espaço pode ser obtida. Este estudo aplica Redes Neurais Artificiais (RNA) para simular o comportamento dos piezômetros instalados em uma descontinuidade geológica na fundação da Barragem de Itaipu. Ele considera diferentes tipos de dados de entrada em uma Rede Neural Multicamadas e determina a melhor arquitetura de RNA que mais se aproxima da situação real. |
| id |
USP_bb598fae4904c19012dfb592019c7f89 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-06032014-103252 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de ItaipuEvaluation with Artificial Neural Networks of the monitoring data of the piezometers of Itaipu concrete damArtificial Neural NetworkBarragem de ItaipuItaipu DamPiezometerPiezômetroRedes Neurais ArtificiaisA Barragem de Itaipu é uma obra de engenharia de grande importância. Localizada na fronteira entre o Brasil e o Paraguai no Rio Paraná e com coordenadas geográficas aproximadas 25°24\'29\"S, 54°35\'21\"O, ela fornece energia elétrica a estes dois países e deve ser constantemente monitorada de modo a manter níveis de qualidade e segurança. Mais de dois mil instrumentos foram instalados e fornecem dados contínuos sobre diversas características da fundação e estrutura da barragem, incluindo mais de 650 piezômetros. A avaliação de níveis piezométricos em barragens é importante, pois refletem os valores de subpressão que atuam na estrutura da barragem. A utilização de novos métodos em tais análises pode permitir agilidade na tomada de decisões por parte da equipe de segurança de barragens. Dependendo do método aplicado, uma melhor compreensão do fenômeno no tempo e espaço pode ser obtida. Este estudo aplica Redes Neurais Artificiais (RNA) para simular o comportamento dos piezômetros instalados em uma descontinuidade geológica na fundação da Barragem de Itaipu. Ele considera diferentes tipos de dados de entrada em uma Rede Neural Multicamadas e determina a melhor arquitetura de RNA que mais se aproxima da situação real.Itaipu Dam is an engineering work of high importance. Located at the border between Brazil and Paraguay in the Paraná River and with approximated geographical coordinates 25°24\'29\"S, 54°35\'21\"W, it provides electrical energy to these two countries and has to be constantly monitored in order to maintain its levels of quality and security. Over two thousand instruments have been installed and they provide continuous data about several characteristics of the dam foundation and structure, including more than 650 piezometers. The evaluation of piezometric levels in dams is important for it reflects the values of the uplift pressure that acts on the structure of the dam. The utilization of new methods in such an analysis can provide agility to decisions-taking by the security team of the dam. Depending on the method applied, a better comprehension of the phenomenon in time and space may be achieved. This study employs Artificial Neural Networks (ANN) to simulate the behavior of the piezometers installed in a geological discontinuity in the foundation of Itaipu Dam. It considers different types of entry data in a Multilayer Neural Network and determines the best ANN architecture that is closest to the real situation.Biblioteca Digitais de Teses e Dissertações da USPZuquette, Lázaro ValentinMedeiros, Bruno2013-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18132/tde-06032014-103252/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:47Zoai:teses.usp.br:tde-06032014-103252Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu Evaluation with Artificial Neural Networks of the monitoring data of the piezometers of Itaipu concrete dam |
| title |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu |
| spellingShingle |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu Medeiros, Bruno Artificial Neural Network Barragem de Itaipu Itaipu Dam Piezometer Piezômetro Redes Neurais Artificiais |
| title_short |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu |
| title_full |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu |
| title_fullStr |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu |
| title_full_unstemmed |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu |
| title_sort |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu |
| author |
Medeiros, Bruno |
| author_facet |
Medeiros, Bruno |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Zuquette, Lázaro Valentin |
| dc.contributor.author.fl_str_mv |
Medeiros, Bruno |
| dc.subject.por.fl_str_mv |
Artificial Neural Network Barragem de Itaipu Itaipu Dam Piezometer Piezômetro Redes Neurais Artificiais |
| topic |
Artificial Neural Network Barragem de Itaipu Itaipu Dam Piezometer Piezômetro Redes Neurais Artificiais |
| description |
A Barragem de Itaipu é uma obra de engenharia de grande importância. Localizada na fronteira entre o Brasil e o Paraguai no Rio Paraná e com coordenadas geográficas aproximadas 25°24\'29\"S, 54°35\'21\"O, ela fornece energia elétrica a estes dois países e deve ser constantemente monitorada de modo a manter níveis de qualidade e segurança. Mais de dois mil instrumentos foram instalados e fornecem dados contínuos sobre diversas características da fundação e estrutura da barragem, incluindo mais de 650 piezômetros. A avaliação de níveis piezométricos em barragens é importante, pois refletem os valores de subpressão que atuam na estrutura da barragem. A utilização de novos métodos em tais análises pode permitir agilidade na tomada de decisões por parte da equipe de segurança de barragens. Dependendo do método aplicado, uma melhor compreensão do fenômeno no tempo e espaço pode ser obtida. Este estudo aplica Redes Neurais Artificiais (RNA) para simular o comportamento dos piezômetros instalados em uma descontinuidade geológica na fundação da Barragem de Itaipu. Ele considera diferentes tipos de dados de entrada em uma Rede Neural Multicamadas e determina a melhor arquitetura de RNA que mais se aproxima da situação real. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-12-19 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18132/tde-06032014-103252/ |
| url |
http://www.teses.usp.br/teses/disponiveis/18/18132/tde-06032014-103252/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257938192760832 |