Avaliação das mudanças no armazenamento de água subterrânea na bacia do rio Amazonas a partir do downscaling de dados GRACE/GRACE-FO com modelos Machine Learning
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/44/44138/tde-23042024-120951/ |
Resumo: | As alterações no armazenamento de águas subterrâneas (GWS) na bacia do rio Amazonas (ARB) desempenham um papel importante no comportamento hidrológico da região, com uma influência significativa sobre os ecossistemas da floresta tropical, bem como no abastecimento de água potável para as comunidades locais. As missões satelitais GRACE e GRACE-FO fornecem dados gravimétricos a partir das quais é possível monitorar as mudanças no armazenamento de água terrestre (TWS), embora com baixa resolução espacial (1° ou 3°). Este estudo realizou uma redução de escala dos dados do GRACE/GRACE-FO a partir de modelos de aprendizado de máquina de 1° (aproximadamente 110 km) para 0.25° (aproximadamente 27.5 km). Paralelamente, foram comparados e analisados os algoritmos Random Forest e AdaBoost, obtendo magnitudes de erro menores e maior precisão nas previsões do AdaBoost. Foi fornecida uma estimativa da variabilidade espaço-temporal das anomalias de armazenamento de água terrestre e subterrânea a 0.25° entre 2002 e 2021 para a bacia do rio Amazonas. Foram identificados padrões espaciais e temporais associados aos efeitos do clima e das atividades antrópicas, para a bacia em geral, com ênfase no Sistema Aquífero Amazonas (SAA) e em alguns aquíferos menores (Parecis, Ronuro e Boa Vista). As séries temporais mostraram uma alta susceptibilidade aos fenômenos El Niño e La Niña nas GWS dos aquíferos confinados ou livres. Além disso, a expansão da fronteira agrícola, o desmatamento e queimadas prolongadas ao longo do tempo têm levado à redução das GWS com tendências lineares de aproximadamente 7mm/ano em áreas de 0.25° nos aquíferos de Parecies e Ronuro. O comportamento regional da ARB apresenta uma tendência positiva de longo prazo no armazenamento terrestre e subterrâneo de 14.26 ± 1.18 km³/ano e +22.24 ± 1.18 km³/ano, respectivamente. A validação entre as séries temporais das GWS e os níveis de água em poços de monitoramento obteve coeficientes de correlação máximos de 0,85 com níveis de confiança de 0.01. Esses resultados são promissores para o uso de informações satelitais na gestão da água, especialmente no monitoramento regional de aquíferos não confinados. |
| id |
USP_c70681085467e3dad300c83fbcc37b9e |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-23042024-120951 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Avaliação das mudanças no armazenamento de água subterrânea na bacia do rio Amazonas a partir do downscaling de dados GRACE/GRACE-FO com modelos Machine LearningAssessment of changes in groundwater storage in the Amazon River basin through downscaling of GRACE/GRACE-FO data with Machine Learning modelsAdaBoostAdaBoostAmazon Aquifer SystemAnthropogenic impactArtificial intelligenceImpacto antropogênicoInteligência ArtificialRandom ForestRandom ForestRemote sensingSensoriamento remotoSéries temporaisSistema Aquífero AmazônicoTime seriesAs alterações no armazenamento de águas subterrâneas (GWS) na bacia do rio Amazonas (ARB) desempenham um papel importante no comportamento hidrológico da região, com uma influência significativa sobre os ecossistemas da floresta tropical, bem como no abastecimento de água potável para as comunidades locais. As missões satelitais GRACE e GRACE-FO fornecem dados gravimétricos a partir das quais é possível monitorar as mudanças no armazenamento de água terrestre (TWS), embora com baixa resolução espacial (1° ou 3°). Este estudo realizou uma redução de escala dos dados do GRACE/GRACE-FO a partir de modelos de aprendizado de máquina de 1° (aproximadamente 110 km) para 0.25° (aproximadamente 27.5 km). Paralelamente, foram comparados e analisados os algoritmos Random Forest e AdaBoost, obtendo magnitudes de erro menores e maior precisão nas previsões do AdaBoost. Foi fornecida uma estimativa da variabilidade espaço-temporal das anomalias de armazenamento de água terrestre e subterrânea a 0.25° entre 2002 e 2021 para a bacia do rio Amazonas. Foram identificados padrões espaciais e temporais associados aos efeitos do clima e das atividades antrópicas, para a bacia em geral, com ênfase no Sistema Aquífero Amazonas (SAA) e em alguns aquíferos menores (Parecis, Ronuro e Boa Vista). As séries temporais mostraram uma alta susceptibilidade aos fenômenos El Niño e La Niña nas GWS dos aquíferos confinados ou livres. Além disso, a expansão da fronteira agrícola, o desmatamento e queimadas prolongadas ao longo do tempo têm levado à redução das GWS com tendências lineares de aproximadamente 7mm/ano em áreas de 0.25° nos aquíferos de Parecies e Ronuro. O comportamento regional da ARB apresenta uma tendência positiva de longo prazo no armazenamento terrestre e subterrâneo de 14.26 ± 1.18 km³/ano e +22.24 ± 1.18 km³/ano, respectivamente. A validação entre as séries temporais das GWS e os níveis de água em poços de monitoramento obteve coeficientes de correlação máximos de 0,85 com níveis de confiança de 0.01. Esses resultados são promissores para o uso de informações satelitais na gestão da água, especialmente no monitoramento regional de aquíferos não confinados.Changes in groundwater storage (GWS) in the Amazon River Basin (ARB) play an important role in the hydrological behavior of the region, with a significant influence on rainforest ecosystems as well as on the supply of drinking water to local communities. GRACE and GRACE-FO satellite missions provide gravimetric anomalies from which it is possible to monitor changes in terrestrial water storage (TWS), albeit at a low spatial resolution (1° or 3°). This study downscaled GRACE/GRACE-FO data from 1° machine learning models (approx. 110 km) to 0.25° (approx. 27.5 km). Concurrently, the Random Forest and AdaBoost algorithms were compared and analyzed, with AdaBoost demonstrating lower error magnitudes and superior prediction accuracy. An estimation of the space-time variability of terrestrial and groundwater storage anomalies at 0.25° between 2002 and 2021 for the Amazon River basin is provided. Spatial and temporal patterns associated with climate effects and anthropogenic activities were identified, focusing on the Amazon Aquifer System (SAA) and some smaller aquifers (Parecis, Ronuro, and Boa Vista). Time series data show a high susceptibility to El Niño and La Niña phenomena in the GWS of unconfined or free aquifers. Additionally, the expansion of the agricultural frontier, deforestation, and prolonged burning have led to a decline in GWS, with linear trends of approximately 7mm/year in the Parecis and Ronuro aquifers. The regional behavior of the ARB presents a long-term positive trend in terrestrial and groundwater storage of 14.26 ± 1.18 km³/year and +22.24 ± 1.18 km³/year, respectively. Validation between GWS time series and water levels in monitoring wells achieved maximum correlation coefficients of 0.85 with confidence levels of 0.01. These results hold promise for the use of satellite information in water management, particularly in the regional monitoring of unconfined aquifers.Biblioteca Digitais de Teses e Dissertações da USPSuhogusoff, Alexandra VieiraSatizabal Alarcon, Diego Alejandro 2023-09-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/44/44138/tde-23042024-120951/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-04-24T20:12:02Zoai:teses.usp.br:tde-23042024-120951Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-04-24T20:12:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Avaliação das mudanças no armazenamento de água subterrânea na bacia do rio Amazonas a partir do downscaling de dados GRACE/GRACE-FO com modelos Machine Learning Assessment of changes in groundwater storage in the Amazon River basin through downscaling of GRACE/GRACE-FO data with Machine Learning models |
| title |
Avaliação das mudanças no armazenamento de água subterrânea na bacia do rio Amazonas a partir do downscaling de dados GRACE/GRACE-FO com modelos Machine Learning |
| spellingShingle |
Avaliação das mudanças no armazenamento de água subterrânea na bacia do rio Amazonas a partir do downscaling de dados GRACE/GRACE-FO com modelos Machine Learning Satizabal Alarcon, Diego Alejandro AdaBoost AdaBoost Amazon Aquifer System Anthropogenic impact Artificial intelligence Impacto antropogênico Inteligência Artificial Random Forest Random Forest Remote sensing Sensoriamento remoto Séries temporais Sistema Aquífero Amazônico Time series |
| title_short |
Avaliação das mudanças no armazenamento de água subterrânea na bacia do rio Amazonas a partir do downscaling de dados GRACE/GRACE-FO com modelos Machine Learning |
| title_full |
Avaliação das mudanças no armazenamento de água subterrânea na bacia do rio Amazonas a partir do downscaling de dados GRACE/GRACE-FO com modelos Machine Learning |
| title_fullStr |
Avaliação das mudanças no armazenamento de água subterrânea na bacia do rio Amazonas a partir do downscaling de dados GRACE/GRACE-FO com modelos Machine Learning |
| title_full_unstemmed |
Avaliação das mudanças no armazenamento de água subterrânea na bacia do rio Amazonas a partir do downscaling de dados GRACE/GRACE-FO com modelos Machine Learning |
| title_sort |
Avaliação das mudanças no armazenamento de água subterrânea na bacia do rio Amazonas a partir do downscaling de dados GRACE/GRACE-FO com modelos Machine Learning |
| author |
Satizabal Alarcon, Diego Alejandro |
| author_facet |
Satizabal Alarcon, Diego Alejandro |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Suhogusoff, Alexandra Vieira |
| dc.contributor.author.fl_str_mv |
Satizabal Alarcon, Diego Alejandro |
| dc.subject.por.fl_str_mv |
AdaBoost AdaBoost Amazon Aquifer System Anthropogenic impact Artificial intelligence Impacto antropogênico Inteligência Artificial Random Forest Random Forest Remote sensing Sensoriamento remoto Séries temporais Sistema Aquífero Amazônico Time series |
| topic |
AdaBoost AdaBoost Amazon Aquifer System Anthropogenic impact Artificial intelligence Impacto antropogênico Inteligência Artificial Random Forest Random Forest Remote sensing Sensoriamento remoto Séries temporais Sistema Aquífero Amazônico Time series |
| description |
As alterações no armazenamento de águas subterrâneas (GWS) na bacia do rio Amazonas (ARB) desempenham um papel importante no comportamento hidrológico da região, com uma influência significativa sobre os ecossistemas da floresta tropical, bem como no abastecimento de água potável para as comunidades locais. As missões satelitais GRACE e GRACE-FO fornecem dados gravimétricos a partir das quais é possível monitorar as mudanças no armazenamento de água terrestre (TWS), embora com baixa resolução espacial (1° ou 3°). Este estudo realizou uma redução de escala dos dados do GRACE/GRACE-FO a partir de modelos de aprendizado de máquina de 1° (aproximadamente 110 km) para 0.25° (aproximadamente 27.5 km). Paralelamente, foram comparados e analisados os algoritmos Random Forest e AdaBoost, obtendo magnitudes de erro menores e maior precisão nas previsões do AdaBoost. Foi fornecida uma estimativa da variabilidade espaço-temporal das anomalias de armazenamento de água terrestre e subterrânea a 0.25° entre 2002 e 2021 para a bacia do rio Amazonas. Foram identificados padrões espaciais e temporais associados aos efeitos do clima e das atividades antrópicas, para a bacia em geral, com ênfase no Sistema Aquífero Amazonas (SAA) e em alguns aquíferos menores (Parecis, Ronuro e Boa Vista). As séries temporais mostraram uma alta susceptibilidade aos fenômenos El Niño e La Niña nas GWS dos aquíferos confinados ou livres. Além disso, a expansão da fronteira agrícola, o desmatamento e queimadas prolongadas ao longo do tempo têm levado à redução das GWS com tendências lineares de aproximadamente 7mm/ano em áreas de 0.25° nos aquíferos de Parecies e Ronuro. O comportamento regional da ARB apresenta uma tendência positiva de longo prazo no armazenamento terrestre e subterrâneo de 14.26 ± 1.18 km³/ano e +22.24 ± 1.18 km³/ano, respectivamente. A validação entre as séries temporais das GWS e os níveis de água em poços de monitoramento obteve coeficientes de correlação máximos de 0,85 com níveis de confiança de 0.01. Esses resultados são promissores para o uso de informações satelitais na gestão da água, especialmente no monitoramento regional de aquíferos não confinados. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09-26 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/44/44138/tde-23042024-120951/ |
| url |
https://www.teses.usp.br/teses/disponiveis/44/44138/tde-23042024-120951/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258465795309568 |