Homomorfismos de grafos
| Ano de defesa: | 2008 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07082008-105246/ |
Resumo: | Homomorfismos de grafos são funções do conjunto de vértices de um grafo no conjunto de vértices de outro grafo que preservam adjacências. O estudo de homomorfismos de grafos é bastante abrangente, existindo muitas linhas de pesquisa sobre esse tópico. Nesta dissertação, apresentaremos resultados sobre homomorfismos de grafos relacionados a pseudo-aleatoriedade, convergência de seqüência de grafos e matrizes de conexão de invariantes de grafos. Esta linha tem se mostrado muito rica, não apenas pelos seus resultados, como também pelas técnicas utilizadas nas demonstrações. Em especial, destacamos a diversidade das ferramentas matemáticas que são usadas, que incluem resultados clássicos de álgebra, probabilidade e análise. |
| id |
USP_ca7eef11ab191f2cbf78b4acf6313911 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-07082008-105246 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Homomorfismos de grafosGraph Homomorphismsconnection matricesconvergenceconvergênciagrafosgraph homomorphismsgraph parametersgraph sequencesgraphshomomorfismosinvariante de grafosmatrizes de conexãopseudo-aleatoriedadequasirandomnesssequências de grafosHomomorfismos de grafos são funções do conjunto de vértices de um grafo no conjunto de vértices de outro grafo que preservam adjacências. O estudo de homomorfismos de grafos é bastante abrangente, existindo muitas linhas de pesquisa sobre esse tópico. Nesta dissertação, apresentaremos resultados sobre homomorfismos de grafos relacionados a pseudo-aleatoriedade, convergência de seqüência de grafos e matrizes de conexão de invariantes de grafos. Esta linha tem se mostrado muito rica, não apenas pelos seus resultados, como também pelas técnicas utilizadas nas demonstrações. Em especial, destacamos a diversidade das ferramentas matemáticas que são usadas, que incluem resultados clássicos de álgebra, probabilidade e análise.Graph homomorphisms are functions from the vertex set of a graph to the vertex set of another graph that preserve adjacencies. The study of graph homomorphisms is very broad, and there are several lines of research about this topic. In this dissertation, we present results about graph homomorphisms related to convergence of graph sequences and connection matrices of graph parameters. This line of research has been proved to be very rich, not only for its results, but also for the proof techniques. In particular, we highlight the diversity of mathematical tools used, including classical results from Algebra, Probability and Analysis.Biblioteca Digitais de Teses e Dissertações da USPKohayakawa, YoshiharuSato, Cristiane Maria2008-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-07082008-105246/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:56Zoai:teses.usp.br:tde-07082008-105246Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Homomorfismos de grafos Graph Homomorphisms |
| title |
Homomorfismos de grafos |
| spellingShingle |
Homomorfismos de grafos Sato, Cristiane Maria connection matrices convergence convergência grafos graph homomorphisms graph parameters graph sequences graphs homomorfismos invariante de grafos matrizes de conexão pseudo-aleatoriedade quasirandomness sequências de grafos |
| title_short |
Homomorfismos de grafos |
| title_full |
Homomorfismos de grafos |
| title_fullStr |
Homomorfismos de grafos |
| title_full_unstemmed |
Homomorfismos de grafos |
| title_sort |
Homomorfismos de grafos |
| author |
Sato, Cristiane Maria |
| author_facet |
Sato, Cristiane Maria |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Kohayakawa, Yoshiharu |
| dc.contributor.author.fl_str_mv |
Sato, Cristiane Maria |
| dc.subject.por.fl_str_mv |
connection matrices convergence convergência grafos graph homomorphisms graph parameters graph sequences graphs homomorfismos invariante de grafos matrizes de conexão pseudo-aleatoriedade quasirandomness sequências de grafos |
| topic |
connection matrices convergence convergência grafos graph homomorphisms graph parameters graph sequences graphs homomorfismos invariante de grafos matrizes de conexão pseudo-aleatoriedade quasirandomness sequências de grafos |
| description |
Homomorfismos de grafos são funções do conjunto de vértices de um grafo no conjunto de vértices de outro grafo que preservam adjacências. O estudo de homomorfismos de grafos é bastante abrangente, existindo muitas linhas de pesquisa sobre esse tópico. Nesta dissertação, apresentaremos resultados sobre homomorfismos de grafos relacionados a pseudo-aleatoriedade, convergência de seqüência de grafos e matrizes de conexão de invariantes de grafos. Esta linha tem se mostrado muito rica, não apenas pelos seus resultados, como também pelas técnicas utilizadas nas demonstrações. Em especial, destacamos a diversidade das ferramentas matemáticas que são usadas, que incluem resultados clássicos de álgebra, probabilidade e análise. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-04-25 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07082008-105246/ |
| url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07082008-105246/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257941214756864 |