Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no plano
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23082016-103753/ |
Resumo: | Nesta tese estudamos um dos principais problemas na teoria qualitativa das equações diferenciais planares: o problema de determinar a bacia de atração de um ponto de equilíbrio. Damos uma prova rigorosa de que para sistemas lineares por partes de costura com duas zonas no plano, definidas por matrizes Hurwitz o único ponto de equilíbrio na reta de separação é globalmente assintoticamente estável. Por outro lado, provamos que nesta classe de sistemas, podemos ter um ponto de equilíbrio instável na origem quando uma curva poligonal separa as zonas, levando a um resultado contra-intuitivo do comportamento dinâmico de sistemas lineares por partes no plano. Além disso, estudamos os ciclos limites em perturbações suaves por partes de centros Hamiltonianos. Neste cenário, é comum adaptar resultados clássicos de sistemas suaves, como funções de Melnikov, para sistemas não-suaves. No entanto, existe pouca justificativa para este procedimento na literatura. Ao utilizar o método de regularização damos uma prova que suporta o uso de funções de Melnikov diretamente do problema não-suave original. |
| id |
USP_cf23e234504e09695bc05f47404d2c22 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-23082016-103753 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no planoGlobal asymptotic stability and continuation of periodic solutions in piecewise smooth systems with two zones in the planeCiclo limiteFunção de MelnikovLimit cycleMelnikov functionMétodo de regularizaçãoPiecewise differential systemRegularization methodSistema suave por partesNesta tese estudamos um dos principais problemas na teoria qualitativa das equações diferenciais planares: o problema de determinar a bacia de atração de um ponto de equilíbrio. Damos uma prova rigorosa de que para sistemas lineares por partes de costura com duas zonas no plano, definidas por matrizes Hurwitz o único ponto de equilíbrio na reta de separação é globalmente assintoticamente estável. Por outro lado, provamos que nesta classe de sistemas, podemos ter um ponto de equilíbrio instável na origem quando uma curva poligonal separa as zonas, levando a um resultado contra-intuitivo do comportamento dinâmico de sistemas lineares por partes no plano. Além disso, estudamos os ciclos limites em perturbações suaves por partes de centros Hamiltonianos. Neste cenário, é comum adaptar resultados clássicos de sistemas suaves, como funções de Melnikov, para sistemas não-suaves. No entanto, existe pouca justificativa para este procedimento na literatura. Ao utilizar o método de regularização damos uma prova que suporta o uso de funções de Melnikov diretamente do problema não-suave original.In this thesis we study one of the main problems in the qualitative theory of planar differential equations: the problem of determining the basin of attraction of an equilibrium point. We give a rigorous proof that for planar sewing piecewise linear systems with two zones, defined by Hurwitz matrices the unique equilibrium point in the separation straight line is globally asymptotically stable. On the other hand, we prove that sewing piecewise linear systems with two zones in the plane, defined by Hurwitz matrices can have one unstable equilibrium point at the origin allowing a broken line to separate the zones, leading to counterintuitive dynamical behaviors of simple piecewise linear systems in the plane. Furthermore, we study limit cycles in piecewise smooth perturbations of Hamiltonians centers. In this setting it is common to adapt classical results for smooth systems, like Melnikov functions, to non-smooth ones. However, there is little justification for this procedure in the literature. By using the regularization method we give a proof that supports the use of Melnikov functions directly from the original non-smooth problem.Biblioteca Digitais de Teses e Dissertações da USPMello, Luis Fernando de OsórioFonseca, Alexander Fernandes da2016-05-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-23082016-103753/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:35Zoai:teses.usp.br:tde-23082016-103753Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no plano Global asymptotic stability and continuation of periodic solutions in piecewise smooth systems with two zones in the plane |
| title |
Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no plano |
| spellingShingle |
Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no plano Fonseca, Alexander Fernandes da Ciclo limite Função de Melnikov Limit cycle Melnikov function Método de regularização Piecewise differential system Regularization method Sistema suave por partes |
| title_short |
Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no plano |
| title_full |
Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no plano |
| title_fullStr |
Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no plano |
| title_full_unstemmed |
Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no plano |
| title_sort |
Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no plano |
| author |
Fonseca, Alexander Fernandes da |
| author_facet |
Fonseca, Alexander Fernandes da |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Mello, Luis Fernando de Osório |
| dc.contributor.author.fl_str_mv |
Fonseca, Alexander Fernandes da |
| dc.subject.por.fl_str_mv |
Ciclo limite Função de Melnikov Limit cycle Melnikov function Método de regularização Piecewise differential system Regularization method Sistema suave por partes |
| topic |
Ciclo limite Função de Melnikov Limit cycle Melnikov function Método de regularização Piecewise differential system Regularization method Sistema suave por partes |
| description |
Nesta tese estudamos um dos principais problemas na teoria qualitativa das equações diferenciais planares: o problema de determinar a bacia de atração de um ponto de equilíbrio. Damos uma prova rigorosa de que para sistemas lineares por partes de costura com duas zonas no plano, definidas por matrizes Hurwitz o único ponto de equilíbrio na reta de separação é globalmente assintoticamente estável. Por outro lado, provamos que nesta classe de sistemas, podemos ter um ponto de equilíbrio instável na origem quando uma curva poligonal separa as zonas, levando a um resultado contra-intuitivo do comportamento dinâmico de sistemas lineares por partes no plano. Além disso, estudamos os ciclos limites em perturbações suaves por partes de centros Hamiltonianos. Neste cenário, é comum adaptar resultados clássicos de sistemas suaves, como funções de Melnikov, para sistemas não-suaves. No entanto, existe pouca justificativa para este procedimento na literatura. Ao utilizar o método de regularização damos uma prova que suporta o uso de funções de Melnikov diretamente do problema não-suave original. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-05-20 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23082016-103753/ |
| url |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23082016-103753/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257773789675520 |