Gerenciamento inteligente dos sistemas de armazenamento de energia elétrica para arbitragem energética

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Souza, Jonas Villela de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18154/tde-14122020-150248/
Resumo: A demanda por fontes de energia renováveis aumentou o interesse por Sistemas de Armazenamento de Energia Elétrica (SAEEs) de maneira significativa. Isso se dá devido às suas características interessantes, como resposta rápida e por seu preço em queda. Os SAEEs podem ser utilizados em vários cenários conectados aos sistemas elétricos de potência. Dentre eles, destaca-se o retorno financeiro obtido através da compra e venda de energia elétrica, a arbitragem energética. O objetivo deste trabalho é desenvolver um modelo de gerenciamento inteligente para o SAEE. Neste sentido, são propostos três modelos distintos. O primeiro modelo utiliza o algoritmo de otimização mono-objetivo Evolutionary Particle Swarm Optimization (EPSO) em conjunto com um sistema correcional baseado na lógica fuzzy, sendo o sistema correcional capaz de corrigir as decisões tomadas pelo algoritmo de otimização no sentido de se obter uma maior arbitragem energética. Já o segundo e o terceiro modelo combinam o algoritmo multiobjetivo Multi-objective Evolutionary Particle Swarm Optimization (MEPSO) com o mesmo sistema correcional utilizado pelo primeiro. Os modelos buscam otimizar um set operacional para o SAEE com a utilização dos preços apresentados pelo Day-Ahead Market (DAM) e aplicá-los durante as horas de operação Real-Time Market (RTM). Caso exista uma diferença entre os dois tipos de preço, o sistema correcional entra em atuação. O modelo que utiliza o EPSO busca maximizar a arbitragem energética como objetivo principal. Para os modelos que utilizam o MEPSO, além da arbitragem energética é esperado que seja empregado para a utilização do SAEE um outro objetivo. Em um dos modelos, é esperado que as perdas ativas nas linhas da Rede de Distribuição de Energia Elétrica (RDEE) sejam gerenciadas de forma que não aumentem substancialmente em relação a operação da rede sem a presença e operação do armazenador, ou quando possível, sejam reduzidas. No outro, é esperado que o perfil de tensão diário seja melhorado. Os modelos apresentados se mostram capazes de cumprir de forma satisfatória os seus objetivos. Os resultados são promissores, uma vez que os lucros obtidos pelos modelos propostos estão acima das demais estratégias testadas por este trabalho.
id USP_d45e287bfceb9b0388df9c4f8184becf
oai_identifier_str oai:teses.usp.br:tde-14122020-150248
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Gerenciamento inteligente dos sistemas de armazenamento de energia elétrica para arbitragem energéticaIntelligent management of Energy Storage Systems for energy arbitrageArbitragem energéticaDistribuição de energiaEnergy arbitrationEnergy distributionEnergy marketEnergy Storage SystemsFuzzy logicLógica fuzzyMercado energéticoOtimização por enxame de partículasParticle Swarm OptimizationSistemas de armazenamento de energiaA demanda por fontes de energia renováveis aumentou o interesse por Sistemas de Armazenamento de Energia Elétrica (SAEEs) de maneira significativa. Isso se dá devido às suas características interessantes, como resposta rápida e por seu preço em queda. Os SAEEs podem ser utilizados em vários cenários conectados aos sistemas elétricos de potência. Dentre eles, destaca-se o retorno financeiro obtido através da compra e venda de energia elétrica, a arbitragem energética. O objetivo deste trabalho é desenvolver um modelo de gerenciamento inteligente para o SAEE. Neste sentido, são propostos três modelos distintos. O primeiro modelo utiliza o algoritmo de otimização mono-objetivo Evolutionary Particle Swarm Optimization (EPSO) em conjunto com um sistema correcional baseado na lógica fuzzy, sendo o sistema correcional capaz de corrigir as decisões tomadas pelo algoritmo de otimização no sentido de se obter uma maior arbitragem energética. Já o segundo e o terceiro modelo combinam o algoritmo multiobjetivo Multi-objective Evolutionary Particle Swarm Optimization (MEPSO) com o mesmo sistema correcional utilizado pelo primeiro. Os modelos buscam otimizar um set operacional para o SAEE com a utilização dos preços apresentados pelo Day-Ahead Market (DAM) e aplicá-los durante as horas de operação Real-Time Market (RTM). Caso exista uma diferença entre os dois tipos de preço, o sistema correcional entra em atuação. O modelo que utiliza o EPSO busca maximizar a arbitragem energética como objetivo principal. Para os modelos que utilizam o MEPSO, além da arbitragem energética é esperado que seja empregado para a utilização do SAEE um outro objetivo. Em um dos modelos, é esperado que as perdas ativas nas linhas da Rede de Distribuição de Energia Elétrica (RDEE) sejam gerenciadas de forma que não aumentem substancialmente em relação a operação da rede sem a presença e operação do armazenador, ou quando possível, sejam reduzidas. No outro, é esperado que o perfil de tensão diário seja melhorado. Os modelos apresentados se mostram capazes de cumprir de forma satisfatória os seus objetivos. Os resultados são promissores, uma vez que os lucros obtidos pelos modelos propostos estão acima das demais estratégias testadas por este trabalho.Demand for renewable energy sources has increased interest in Energy Storage System (ESS) significantly. It is due to its interesting features such as fast response and its falling price. The ESS can be used in various scenarios connected to electrical power systems. Among them, we highlight the financial return obtained through the purchase and sale of electricity, energy arbitrage. This work aims to develop a smart management model for ESS. In this sense, three distinct models are proposed. The first model uses the mono-objective optimization algorithm Evolutionary Particle Swarm Optimization (EPSO) in conjunction with a correctional system based on fuzzy logic, the correctional system is capable of correcting the decisions made by the optimization algorithm to obtain a more significant energy arbitrage. The second and third combine the multi-objective algorithm Multi-objective Evolutionary Particle Swarm Optimization (MEPSO) with the same correctional system used by the first. The models seek to optimize an operational set for the ESS by utilizing the prices presented by Day-Ahead Market (DAM) and apply them during operating hours of the Real-Time Market (RTM). If there is a difference between the two types of price, the correctional system comes into play. The model using EPSO seeks to maximize energy arbitrage as its objective. For the models that use the MEPSO, besides the energy arbitrage, it is expected to achieve another goal by using the ESS. In one, active losses on the Distribution System (DS) lines are expected to be managed so that they do not increase substantially, or where possible, are reduced. On the other one, the daily voltage profile is expected to be improved. The models presented are capable of satisfactorily fulfilling their objectives. The results are promising since the profits obtained by the proposed models are above the other strategies tested.Biblioteca Digitais de Teses e Dissertações da USPAsada, Eduardo NobuhiroSouza, Jonas Villela de2020-02-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18154/tde-14122020-150248/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-06-28T22:59:01Zoai:teses.usp.br:tde-14122020-150248Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-06-28T22:59:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Gerenciamento inteligente dos sistemas de armazenamento de energia elétrica para arbitragem energética
Intelligent management of Energy Storage Systems for energy arbitrage
title Gerenciamento inteligente dos sistemas de armazenamento de energia elétrica para arbitragem energética
spellingShingle Gerenciamento inteligente dos sistemas de armazenamento de energia elétrica para arbitragem energética
Souza, Jonas Villela de
Arbitragem energética
Distribuição de energia
Energy arbitration
Energy distribution
Energy market
Energy Storage Systems
Fuzzy logic
Lógica fuzzy
Mercado energético
Otimização por enxame de partículas
Particle Swarm Optimization
Sistemas de armazenamento de energia
title_short Gerenciamento inteligente dos sistemas de armazenamento de energia elétrica para arbitragem energética
title_full Gerenciamento inteligente dos sistemas de armazenamento de energia elétrica para arbitragem energética
title_fullStr Gerenciamento inteligente dos sistemas de armazenamento de energia elétrica para arbitragem energética
title_full_unstemmed Gerenciamento inteligente dos sistemas de armazenamento de energia elétrica para arbitragem energética
title_sort Gerenciamento inteligente dos sistemas de armazenamento de energia elétrica para arbitragem energética
author Souza, Jonas Villela de
author_facet Souza, Jonas Villela de
author_role author
dc.contributor.none.fl_str_mv Asada, Eduardo Nobuhiro
dc.contributor.author.fl_str_mv Souza, Jonas Villela de
dc.subject.por.fl_str_mv Arbitragem energética
Distribuição de energia
Energy arbitration
Energy distribution
Energy market
Energy Storage Systems
Fuzzy logic
Lógica fuzzy
Mercado energético
Otimização por enxame de partículas
Particle Swarm Optimization
Sistemas de armazenamento de energia
topic Arbitragem energética
Distribuição de energia
Energy arbitration
Energy distribution
Energy market
Energy Storage Systems
Fuzzy logic
Lógica fuzzy
Mercado energético
Otimização por enxame de partículas
Particle Swarm Optimization
Sistemas de armazenamento de energia
description A demanda por fontes de energia renováveis aumentou o interesse por Sistemas de Armazenamento de Energia Elétrica (SAEEs) de maneira significativa. Isso se dá devido às suas características interessantes, como resposta rápida e por seu preço em queda. Os SAEEs podem ser utilizados em vários cenários conectados aos sistemas elétricos de potência. Dentre eles, destaca-se o retorno financeiro obtido através da compra e venda de energia elétrica, a arbitragem energética. O objetivo deste trabalho é desenvolver um modelo de gerenciamento inteligente para o SAEE. Neste sentido, são propostos três modelos distintos. O primeiro modelo utiliza o algoritmo de otimização mono-objetivo Evolutionary Particle Swarm Optimization (EPSO) em conjunto com um sistema correcional baseado na lógica fuzzy, sendo o sistema correcional capaz de corrigir as decisões tomadas pelo algoritmo de otimização no sentido de se obter uma maior arbitragem energética. Já o segundo e o terceiro modelo combinam o algoritmo multiobjetivo Multi-objective Evolutionary Particle Swarm Optimization (MEPSO) com o mesmo sistema correcional utilizado pelo primeiro. Os modelos buscam otimizar um set operacional para o SAEE com a utilização dos preços apresentados pelo Day-Ahead Market (DAM) e aplicá-los durante as horas de operação Real-Time Market (RTM). Caso exista uma diferença entre os dois tipos de preço, o sistema correcional entra em atuação. O modelo que utiliza o EPSO busca maximizar a arbitragem energética como objetivo principal. Para os modelos que utilizam o MEPSO, além da arbitragem energética é esperado que seja empregado para a utilização do SAEE um outro objetivo. Em um dos modelos, é esperado que as perdas ativas nas linhas da Rede de Distribuição de Energia Elétrica (RDEE) sejam gerenciadas de forma que não aumentem substancialmente em relação a operação da rede sem a presença e operação do armazenador, ou quando possível, sejam reduzidas. No outro, é esperado que o perfil de tensão diário seja melhorado. Os modelos apresentados se mostram capazes de cumprir de forma satisfatória os seus objetivos. Os resultados são promissores, uma vez que os lucros obtidos pelos modelos propostos estão acima das demais estratégias testadas por este trabalho.
publishDate 2020
dc.date.none.fl_str_mv 2020-02-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18154/tde-14122020-150248/
url https://www.teses.usp.br/teses/disponiveis/18/18154/tde-14122020-150248/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258135696244736