Inferring heterotic patterns and the effect of incorporating dominance deviations for hybrid prediction: an example in tropical maize under nitrogen stress conditions

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Morosini, Julia Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11137/tde-15072020-121959/
Resumo: Hybrid breeding exploits heterosis, a phenomenon that relies on the development of heterotic groups (HG). Hybrid prediction incorporates relationship information in genetic-statistical analyses to increase the accuracy and to improve the assessment of individuals\' genetic values. Such relationship matrices, however, often neglect non-additive effects. Moreover, a critical factor in a hybrid breeding program is the genomic prediction being performed based on the same allelic effects for two heterotic groups. Finally, nitrogen (N) deficiency is a major constraint for maize productivity and may significantly confound inferences from genetic approaches. In this study, we considered models including additive and the combination of additive+dominance effects for the estimation of combining abilities, the determination of heterotic groups, and the impact of the differential modeling of marker effects on heterotic groups in a maize breeding population. We also investigated the N stress effect on these parameters. For that, 906 single crosses obtained from a diallel scheme of 49 inbred maize lines were genotyped in silico using 34,571 SNP and evaluated in four environments in State of São Paulo, Brazil, each with two N regimes: ideal (IN) and stress (LN). Three modeling scenarios were considered: pedigree-based (I), where no genomic relationship information was considered; additive (Ga), where an additive incidence matrix was assigned to lines; and additive+dominance (Ga+d), where the additive and the dominance effects were considered for lines and hybrids, respectively. HG were defined based on the specific combining ability (SCA) in each scenario. Prediction abilities (PA) were obtained using a 5-fold cross-validation approach. Our results indicate that the incorporation of both additive effects and dominance deviations allows us to discriminate the estimates of general and specific combining abilities better. SCA assigned distinct clustering of parents for each scenario. More considerable differences in heterotic pool composition occurred between scenarios Ga and Ga+d, although there was still a meaningful overlap. Incorporating HG into the prediction analysis provided a significantly increased SCA of the single crosses, and a noteworthy increase in PA. The genetic estimates were lower for LN compared to IN (significant at the 0.01 level), and the genetic distance between groups was higher for IN. Our findings reveal that additive effects are well assessed by using pedigree data when the population lacks structure. In addition, clustering HG based on SCA from the Ga+d scenario is a useful approach for reciprocal recurrent selection when no previous information is available about population genetic structure. We also observed that N stress hinders resolution in determining heterotic patterns, which compromises the exploration of heterosis. Ultimately, the incorporation of dominance provides relevant information for the determination of heterotic groups, and the differential modeling of marker effects for each HG is crucial to a sustainable breeding program.
id USP_d7473de181b5d219af079b168f1cfa34
oai_identifier_str oai:teses.usp.br:tde-15072020-121959
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Inferring heterotic patterns and the effect of incorporating dominance deviations for hybrid prediction: an example in tropical maize under nitrogen stress conditionsInferindo padrões heteróticos e o efeito da incorporação de desvios de dominância na predição de híbridos: um exemplo em milho tropical sob condições de estresse de nitrogênioZea maysZea maysCapacidades de combinaçãoCombining abilitiesDominanceEstrutura de populaçãoGrupos heteróticosHeterotic groupsHybrid breedingMelhoramentoNitrogen stressPopulation structureHybrid breeding exploits heterosis, a phenomenon that relies on the development of heterotic groups (HG). Hybrid prediction incorporates relationship information in genetic-statistical analyses to increase the accuracy and to improve the assessment of individuals\' genetic values. Such relationship matrices, however, often neglect non-additive effects. Moreover, a critical factor in a hybrid breeding program is the genomic prediction being performed based on the same allelic effects for two heterotic groups. Finally, nitrogen (N) deficiency is a major constraint for maize productivity and may significantly confound inferences from genetic approaches. In this study, we considered models including additive and the combination of additive+dominance effects for the estimation of combining abilities, the determination of heterotic groups, and the impact of the differential modeling of marker effects on heterotic groups in a maize breeding population. We also investigated the N stress effect on these parameters. For that, 906 single crosses obtained from a diallel scheme of 49 inbred maize lines were genotyped in silico using 34,571 SNP and evaluated in four environments in State of São Paulo, Brazil, each with two N regimes: ideal (IN) and stress (LN). Three modeling scenarios were considered: pedigree-based (I), where no genomic relationship information was considered; additive (Ga), where an additive incidence matrix was assigned to lines; and additive+dominance (Ga+d), where the additive and the dominance effects were considered for lines and hybrids, respectively. HG were defined based on the specific combining ability (SCA) in each scenario. Prediction abilities (PA) were obtained using a 5-fold cross-validation approach. Our results indicate that the incorporation of both additive effects and dominance deviations allows us to discriminate the estimates of general and specific combining abilities better. SCA assigned distinct clustering of parents for each scenario. More considerable differences in heterotic pool composition occurred between scenarios Ga and Ga+d, although there was still a meaningful overlap. Incorporating HG into the prediction analysis provided a significantly increased SCA of the single crosses, and a noteworthy increase in PA. The genetic estimates were lower for LN compared to IN (significant at the 0.01 level), and the genetic distance between groups was higher for IN. Our findings reveal that additive effects are well assessed by using pedigree data when the population lacks structure. In addition, clustering HG based on SCA from the Ga+d scenario is a useful approach for reciprocal recurrent selection when no previous information is available about population genetic structure. We also observed that N stress hinders resolution in determining heterotic patterns, which compromises the exploration of heterosis. Ultimately, the incorporation of dominance provides relevant information for the determination of heterotic groups, and the differential modeling of marker effects for each HG is crucial to a sustainable breeding program.O melhoramento de híbridos explora a heterose, fenômeno melhor explorado quando há designação de grupos heteróticos (HG). A predição de híbridos incorpora informações de relacionamento nas análises estatístico-genéticas para aumentar a acurácia e melhorar a avaliação dos valores genéticos dos indivíduos. No entanto, tais matrizes de relacionamento geralmente negligenciam efeitos não aditivos. Além disso, um fator crítico em um programa de melhoramento híbrido é a previsão genômica ser realizada com base nos mesmos efeitos alélicos para dois grupos heteróticos. Finalmente, a deficiência de nitrogênio (N) é uma grande restrição para a produtividade do milho e pode confundir significativamente inferências de abordagens genéticas. Neste estudo, consideramos modelos que incluem efeito aditivo e a combinação de efeitos aditivo+dominância para estimar capacidades de combinação, determinar grupos heteróticos e o impacto da modelagem diferencial de efeitos de marcadores em grupos heteróticos em uma população de melhoramento de milho. Também investigamos o efeito do estresse N nesses parâmetros. Para isso, 906 híbridos simples obtidos de um dialelo de 49 linhagens de milho foram genotipados in silico usando 34,571 SNP e avaliados em quatro ambientes no Estado de São Paulo, Brasil, cada um com dois regimes N: ideal (IN) e estresse (LN). Três cenários de modelagem foram considerados: baseado em pedigree (I), onde nenhuma informação de relacionamento genômico foi considerada; aditivo (Ga), onde uma matriz de incidência aditiva foi atribuída às linhagens; e aditivo+dominância (Ga+d), onde os efeitos aditivo e de dominância foram considerados para linhagens e híbridos, respectivamente. Os HG foram definidos com base na capacidade específica de combinação (SCA) em cada cenário. As capacidades preditivas (PA) foram obtidas usando uma abordagem de validação cruzada de 5-fold. Os resultados indicam que a incorporação de ambos efeitos aditivos e desvios de dominância permite discriminar melhor as estimativas de capacidades geral e específica de combinação. A SCA designou agrupamentos distintos de linhagens genitoras para cada cenário. Ocorreram diferenças mais consideráveis na composição heterótica entre os cenários Ga e Ga+d, embora ainda houvesse uma sobreposição relevante. As estimativas genéticas foram significativamente menores para o LN em comparação ao IN, e a distância genética entre os grupos foi maior para o IN. As presentes descobertas revelam que agrupar HG com base em SCA do cenário Ga+d é uma abordagem útil para seleção recorrente recíproca quando não há informações anteriores disponíveis sobre a estrutura genética da população. Também foi observado que o estresse de N dificulta a resolução na determinação de padrões heteróticos, o que compromete a exploração da heterose. Por fim, a incorporação da dominância fornece informações relevantes para a determinação de grupos heteróticos, e a modelagem diferencial dos efeitos dos marcadores para cada HG é crucial para um programa de melhoramento sustentável.Biblioteca Digitais de Teses e Dissertações da USPFritsche Neto, RobertoMorosini, Julia Silva2020-06-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-15072020-121959/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-07-15T12:58:51Zoai:teses.usp.br:tde-15072020-121959Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-15T12:58:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Inferring heterotic patterns and the effect of incorporating dominance deviations for hybrid prediction: an example in tropical maize under nitrogen stress conditions
Inferindo padrões heteróticos e o efeito da incorporação de desvios de dominância na predição de híbridos: um exemplo em milho tropical sob condições de estresse de nitrogênio
title Inferring heterotic patterns and the effect of incorporating dominance deviations for hybrid prediction: an example in tropical maize under nitrogen stress conditions
spellingShingle Inferring heterotic patterns and the effect of incorporating dominance deviations for hybrid prediction: an example in tropical maize under nitrogen stress conditions
Morosini, Julia Silva
Zea mays
Zea mays
Capacidades de combinação
Combining abilities
Dominance
Estrutura de população
Grupos heteróticos
Heterotic groups
Hybrid breeding
Melhoramento
Nitrogen stress
Population structure
title_short Inferring heterotic patterns and the effect of incorporating dominance deviations for hybrid prediction: an example in tropical maize under nitrogen stress conditions
title_full Inferring heterotic patterns and the effect of incorporating dominance deviations for hybrid prediction: an example in tropical maize under nitrogen stress conditions
title_fullStr Inferring heterotic patterns and the effect of incorporating dominance deviations for hybrid prediction: an example in tropical maize under nitrogen stress conditions
title_full_unstemmed Inferring heterotic patterns and the effect of incorporating dominance deviations for hybrid prediction: an example in tropical maize under nitrogen stress conditions
title_sort Inferring heterotic patterns and the effect of incorporating dominance deviations for hybrid prediction: an example in tropical maize under nitrogen stress conditions
author Morosini, Julia Silva
author_facet Morosini, Julia Silva
author_role author
dc.contributor.none.fl_str_mv Fritsche Neto, Roberto
dc.contributor.author.fl_str_mv Morosini, Julia Silva
dc.subject.por.fl_str_mv Zea mays
Zea mays
Capacidades de combinação
Combining abilities
Dominance
Estrutura de população
Grupos heteróticos
Heterotic groups
Hybrid breeding
Melhoramento
Nitrogen stress
Population structure
topic Zea mays
Zea mays
Capacidades de combinação
Combining abilities
Dominance
Estrutura de população
Grupos heteróticos
Heterotic groups
Hybrid breeding
Melhoramento
Nitrogen stress
Population structure
description Hybrid breeding exploits heterosis, a phenomenon that relies on the development of heterotic groups (HG). Hybrid prediction incorporates relationship information in genetic-statistical analyses to increase the accuracy and to improve the assessment of individuals\' genetic values. Such relationship matrices, however, often neglect non-additive effects. Moreover, a critical factor in a hybrid breeding program is the genomic prediction being performed based on the same allelic effects for two heterotic groups. Finally, nitrogen (N) deficiency is a major constraint for maize productivity and may significantly confound inferences from genetic approaches. In this study, we considered models including additive and the combination of additive+dominance effects for the estimation of combining abilities, the determination of heterotic groups, and the impact of the differential modeling of marker effects on heterotic groups in a maize breeding population. We also investigated the N stress effect on these parameters. For that, 906 single crosses obtained from a diallel scheme of 49 inbred maize lines were genotyped in silico using 34,571 SNP and evaluated in four environments in State of São Paulo, Brazil, each with two N regimes: ideal (IN) and stress (LN). Three modeling scenarios were considered: pedigree-based (I), where no genomic relationship information was considered; additive (Ga), where an additive incidence matrix was assigned to lines; and additive+dominance (Ga+d), where the additive and the dominance effects were considered for lines and hybrids, respectively. HG were defined based on the specific combining ability (SCA) in each scenario. Prediction abilities (PA) were obtained using a 5-fold cross-validation approach. Our results indicate that the incorporation of both additive effects and dominance deviations allows us to discriminate the estimates of general and specific combining abilities better. SCA assigned distinct clustering of parents for each scenario. More considerable differences in heterotic pool composition occurred between scenarios Ga and Ga+d, although there was still a meaningful overlap. Incorporating HG into the prediction analysis provided a significantly increased SCA of the single crosses, and a noteworthy increase in PA. The genetic estimates were lower for LN compared to IN (significant at the 0.01 level), and the genetic distance between groups was higher for IN. Our findings reveal that additive effects are well assessed by using pedigree data when the population lacks structure. In addition, clustering HG based on SCA from the Ga+d scenario is a useful approach for reciprocal recurrent selection when no previous information is available about population genetic structure. We also observed that N stress hinders resolution in determining heterotic patterns, which compromises the exploration of heterosis. Ultimately, the incorporation of dominance provides relevant information for the determination of heterotic groups, and the differential modeling of marker effects for each HG is crucial to a sustainable breeding program.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11137/tde-15072020-121959/
url https://www.teses.usp.br/teses/disponiveis/11/11137/tde-15072020-121959/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258176800423936