Previsão de arrecadação tributária baseada em um método de otimização de portfólio para a combinação de previsões

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Kubo, Sergio Hideo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Tax
Link de acesso: http://www.teses.usp.br/teses/disponiveis/12/12139/tde-24092014-155619/
Resumo: Uma previsão de receitas precisa é muito importante para o administrador público na elaboração do orçamento anual, e para isso há a necessidade de se encontrar um modelo, econométrico ou não, que possibilite essa previsão com qualidade. Este trabalho apresenta uma forma inovadora para realizar a combinação de modelos de previsão. Seu objetivo foi criar uma metodologia para a obtenção de pesos para a combinação de modelos baseada no método de otimização de uma carteira de investimentos proposto por Markowitz. Para o estudo, foram utilizadas as estimações de três a cinco previsões individuais de um a cinco passos à frente, com os modelos Box-Jenkins SARIMA (Autorregressivo Integrado de Médias Móveis Sazonal), PLSR (Regressão com Mínimos Quadrados Parciais) e o Método não econométrico de Indicadores, como é denominado internamente na Receita Federal. A utilização da fronteira eficiente de Markowitz, que apresenta os pontos de mínima variância para cada retorno, é semelhante à minimização da variância da combinação, proposta no artigo seminal de Bates e Granger. O risco (desvio padrão), na teoria de portfólio de Markowitz, pode ser definido como a dispersão dos resultados e pode ser decomposto em risco sistemático e risco não sistemático. À medida que a quantidade de pesos das previsões a combinar cresce, a parte não sistemática do risco tende a zero, ficando o risco total representado somente pela parte sistemática. Por outro lado, observou-se que a curva de erros correspondente à fronteira eficiente apresenta quebras estruturais à medida que a quantidade de pesos não-zero varia. Selecionando-se trechos em que a quantidade de pesos é maior, minimiza-se a parte não sistemática, minimizando o erro. Dentro desses trechos selecionados, buscaram-se os pontos de menor erro, sendo a combinação encontrada chamada de Mínimo Erro Prim. O Mínimo Erro Seg foi o resultado da combinação com o menor erro, incluindo-se os trechos com a segunda maior quantidade de componentes diferentes de zero na combinação. Embora, na média, os pontos de Mínimo Erro Seg apresentem menor valor de erro que o Mínimo Erro Prim, como o segundo apresenta menor desvio padrão médio, optou-se pelo Mínimo Erro Prim para o ponto escolhido como a proposta de combinação deste estudo. Esse ponto apresenta resultados sistematicamente melhores que o da simples média, utilizada geralmente como benchmark.
id USP_ddcee4fc5e17959835814ded7d3c49a0
oai_identifier_str oai:teses.usp.br:tde-24092014-155619
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Previsão de arrecadação tributária baseada em um método de otimização de portfólio para a combinação de previsõesRevenue forecast based on a portfolio optimization method for combination of forecastsAnálise de séries temporaisEconomic forecastImpostosPortfoliosPortfóliosPrevisão econômicaTaxTime series analysisUma previsão de receitas precisa é muito importante para o administrador público na elaboração do orçamento anual, e para isso há a necessidade de se encontrar um modelo, econométrico ou não, que possibilite essa previsão com qualidade. Este trabalho apresenta uma forma inovadora para realizar a combinação de modelos de previsão. Seu objetivo foi criar uma metodologia para a obtenção de pesos para a combinação de modelos baseada no método de otimização de uma carteira de investimentos proposto por Markowitz. Para o estudo, foram utilizadas as estimações de três a cinco previsões individuais de um a cinco passos à frente, com os modelos Box-Jenkins SARIMA (Autorregressivo Integrado de Médias Móveis Sazonal), PLSR (Regressão com Mínimos Quadrados Parciais) e o Método não econométrico de Indicadores, como é denominado internamente na Receita Federal. A utilização da fronteira eficiente de Markowitz, que apresenta os pontos de mínima variância para cada retorno, é semelhante à minimização da variância da combinação, proposta no artigo seminal de Bates e Granger. O risco (desvio padrão), na teoria de portfólio de Markowitz, pode ser definido como a dispersão dos resultados e pode ser decomposto em risco sistemático e risco não sistemático. À medida que a quantidade de pesos das previsões a combinar cresce, a parte não sistemática do risco tende a zero, ficando o risco total representado somente pela parte sistemática. Por outro lado, observou-se que a curva de erros correspondente à fronteira eficiente apresenta quebras estruturais à medida que a quantidade de pesos não-zero varia. Selecionando-se trechos em que a quantidade de pesos é maior, minimiza-se a parte não sistemática, minimizando o erro. Dentro desses trechos selecionados, buscaram-se os pontos de menor erro, sendo a combinação encontrada chamada de Mínimo Erro Prim. O Mínimo Erro Seg foi o resultado da combinação com o menor erro, incluindo-se os trechos com a segunda maior quantidade de componentes diferentes de zero na combinação. Embora, na média, os pontos de Mínimo Erro Seg apresentem menor valor de erro que o Mínimo Erro Prim, como o segundo apresenta menor desvio padrão médio, optou-se pelo Mínimo Erro Prim para o ponto escolhido como a proposta de combinação deste estudo. Esse ponto apresenta resultados sistematicamente melhores que o da simples média, utilizada geralmente como benchmark.A precise revenue forecast is very important for public administrators to draft an annual report. That is why there is a need to find a model, whether econometric or not, that makes it possible to have a quality forecast. This study proposes an innovative approach to executing a combination of forecasting models. The goal was to create a methodology to obtain weights in order to combine models based on the investment portfolio optimization method proposed by Markowitz. The estimates of three to five individual forecasts from one to five steps ahead were used for the study, with the Box-Jenkins SARIMA (Seasonal Autoregressive Integrated Moving Average) model, the PLSR (Partial Least Squares Regression) model and the non-econometric Method of Indicators, as it is called internally at the Brazilian Federal Revenue Service. The use of Markowitz\'s efficient frontier, which shows the points of minimum variance for each return, is similar to the minimization of the combination variance proposed in the seminal paper by Bates and Granger. The risk (standard deviation) in the Markowitz portfolio theory could be defined as a dispersion of results and could be broken down into systemic risk and non-systemic risk. Insofar as the amount of weights for the forecasts to be combined grows, the non-systemic part of the risks tends to move towards zero, with total risk only being represented by the systemic part. On the other hand, the error curve was found to correspond to the efficient frontier, showing structural breaks insofar as the amount of non-zero weights varies. By selecting parts where there is a greater amount of weights, the non-systemic part is minimized, thus minimizing error. Within these selected parts, the points of least error were sought, with the combination found being called the Prim Minimum Error. The Sec Minimum Error was the result of the combination with the lowest error, including the parts with the second highest amount of components different from zero in the combination. Although on average the Sec Minimum Error points show a lower error value than the Prim Minimum Error, since the second shows a lower standard deviation, the Prim Minimum Error was chosen as the point selected as the combination proposal of this study. This point shows systematically better results than the simple average generally used as a benchmark.Biblioteca Digitais de Teses e Dissertações da USPMontini, Alessandra de ÁvilaKubo, Sergio Hideo2014-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/12/12139/tde-24092014-155619/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-24092014-155619Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Previsão de arrecadação tributária baseada em um método de otimização de portfólio para a combinação de previsões
Revenue forecast based on a portfolio optimization method for combination of forecasts
title Previsão de arrecadação tributária baseada em um método de otimização de portfólio para a combinação de previsões
spellingShingle Previsão de arrecadação tributária baseada em um método de otimização de portfólio para a combinação de previsões
Kubo, Sergio Hideo
Análise de séries temporais
Economic forecast
Impostos
Portfolios
Portfólios
Previsão econômica
Tax
Time series analysis
title_short Previsão de arrecadação tributária baseada em um método de otimização de portfólio para a combinação de previsões
title_full Previsão de arrecadação tributária baseada em um método de otimização de portfólio para a combinação de previsões
title_fullStr Previsão de arrecadação tributária baseada em um método de otimização de portfólio para a combinação de previsões
title_full_unstemmed Previsão de arrecadação tributária baseada em um método de otimização de portfólio para a combinação de previsões
title_sort Previsão de arrecadação tributária baseada em um método de otimização de portfólio para a combinação de previsões
author Kubo, Sergio Hideo
author_facet Kubo, Sergio Hideo
author_role author
dc.contributor.none.fl_str_mv Montini, Alessandra de Ávila
dc.contributor.author.fl_str_mv Kubo, Sergio Hideo
dc.subject.por.fl_str_mv Análise de séries temporais
Economic forecast
Impostos
Portfolios
Portfólios
Previsão econômica
Tax
Time series analysis
topic Análise de séries temporais
Economic forecast
Impostos
Portfolios
Portfólios
Previsão econômica
Tax
Time series analysis
description Uma previsão de receitas precisa é muito importante para o administrador público na elaboração do orçamento anual, e para isso há a necessidade de se encontrar um modelo, econométrico ou não, que possibilite essa previsão com qualidade. Este trabalho apresenta uma forma inovadora para realizar a combinação de modelos de previsão. Seu objetivo foi criar uma metodologia para a obtenção de pesos para a combinação de modelos baseada no método de otimização de uma carteira de investimentos proposto por Markowitz. Para o estudo, foram utilizadas as estimações de três a cinco previsões individuais de um a cinco passos à frente, com os modelos Box-Jenkins SARIMA (Autorregressivo Integrado de Médias Móveis Sazonal), PLSR (Regressão com Mínimos Quadrados Parciais) e o Método não econométrico de Indicadores, como é denominado internamente na Receita Federal. A utilização da fronteira eficiente de Markowitz, que apresenta os pontos de mínima variância para cada retorno, é semelhante à minimização da variância da combinação, proposta no artigo seminal de Bates e Granger. O risco (desvio padrão), na teoria de portfólio de Markowitz, pode ser definido como a dispersão dos resultados e pode ser decomposto em risco sistemático e risco não sistemático. À medida que a quantidade de pesos das previsões a combinar cresce, a parte não sistemática do risco tende a zero, ficando o risco total representado somente pela parte sistemática. Por outro lado, observou-se que a curva de erros correspondente à fronteira eficiente apresenta quebras estruturais à medida que a quantidade de pesos não-zero varia. Selecionando-se trechos em que a quantidade de pesos é maior, minimiza-se a parte não sistemática, minimizando o erro. Dentro desses trechos selecionados, buscaram-se os pontos de menor erro, sendo a combinação encontrada chamada de Mínimo Erro Prim. O Mínimo Erro Seg foi o resultado da combinação com o menor erro, incluindo-se os trechos com a segunda maior quantidade de componentes diferentes de zero na combinação. Embora, na média, os pontos de Mínimo Erro Seg apresentem menor valor de erro que o Mínimo Erro Prim, como o segundo apresenta menor desvio padrão médio, optou-se pelo Mínimo Erro Prim para o ponto escolhido como a proposta de combinação deste estudo. Esse ponto apresenta resultados sistematicamente melhores que o da simples média, utilizada geralmente como benchmark.
publishDate 2014
dc.date.none.fl_str_mv 2014-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/12/12139/tde-24092014-155619/
url http://www.teses.usp.br/teses/disponiveis/12/12139/tde-24092014-155619/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258425016188928