Qualitative properties of radial solutions of the Hénon equation
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-095419/ |
Resumo: | In this work, we study qualitative properties of radial solutions to the Hénon problem { - Δu = ΙxΙαΙuΙp-1 in B; u = 0 on ∂B; where B ⊂ RN is the unit ball centered at the origin, N ≥ 2, α ≥ 0 and p > 1. We obtained results about the computation of the Morse index and the asymptotic profile, as α → ∞, of both positive and sign changing radial solutions. More precisely, we divided this work into two parts. Firstly, considering the case N = 2, we proved that the Morse index of the radial solutions uα, with the same number of nodal sets, is monotone non-decreasing with respect to α. Moreover, we present a lower bound for the Morse indices m(uα), which is better than those that already exist in the literature, showing in particular that m(uα) → ∞ as α → ∞. Secondly, considering N ≥ 3, we show that the two-dimensional Lane-Emden equation can be seen as a limit problem for the Hénon equation. Finally, we used this fact to obtain some qualitative consequences of these solutions. |
| id |
USP_ddd7c0688815887360dcb42b7b60fa60 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-19032020-095419 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Qualitative properties of radial solutions of the Hénon equationPropriedades qualitativas de soluções radiais da equação de HénonAsymptotic behaviorComportamento assintóticoEquação de HénonEquações elípticas semilinearesHénon equationÍndice de MorseMorse indexNodal radial solutionsSemilinear elliptic equationsSoluções radiais nodaisIn this work, we study qualitative properties of radial solutions to the Hénon problem { - Δu = ΙxΙαΙuΙp-1 in B; u = 0 on ∂B; where B ⊂ RN is the unit ball centered at the origin, N ≥ 2, α ≥ 0 and p > 1. We obtained results about the computation of the Morse index and the asymptotic profile, as α → ∞, of both positive and sign changing radial solutions. More precisely, we divided this work into two parts. Firstly, considering the case N = 2, we proved that the Morse index of the radial solutions uα, with the same number of nodal sets, is monotone non-decreasing with respect to α. Moreover, we present a lower bound for the Morse indices m(uα), which is better than those that already exist in the literature, showing in particular that m(uα) → ∞ as α → ∞. Secondly, considering N ≥ 3, we show that the two-dimensional Lane-Emden equation can be seen as a limit problem for the Hénon equation. Finally, we used this fact to obtain some qualitative consequences of these solutions.Neste trabalho, estudamos propriedades qualitativas de soluções radiais para o problema de Hénon ( { - Δu = ΙxΙαΙuΙp-1 in B; u = 0 on ∂B onde B ⊂ RN é a bola unitária centrada na origem, N ≥ 2, α ≥ 0 e p > 1. Obtivemos resultados sobre o cálculo do índice de Morse e o perfil assintótico, quando α → ∞, das soluções radiais, as positivas e também as que trocam de sinal. Mais precisamente, dividimos este trabalho em duas partes. Primeiramente, considerando o caso N = 2, provamos que o índice de Morse das soluções radiais uα, com o mesmo número de conjuntos nodais, é monótono não decrescente com respeito α. Além disso, apresentamos uma cota inferior para os índices de Morse m(uα), melhor que aquelas já existentes na literatura, o que mostra em particular que m(uα) → ∞ quando α → ∞. Segundamente, considerando N ≥ 3, mostramos que a equação de Lane-Emden bidimensional pode ser vista como um problema limite para a equação de Hénon. Por fim, utilizamos este fato para obter algumas consequências qualitativas destas soluções.Biblioteca Digitais de Teses e Dissertações da USPSantos, Ederson Moreira dosSilva, Wendel Leite da2020-03-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-095419/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-03-19T22:07:01Zoai:teses.usp.br:tde-19032020-095419Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-03-19T22:07:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Qualitative properties of radial solutions of the Hénon equation Propriedades qualitativas de soluções radiais da equação de Hénon |
| title |
Qualitative properties of radial solutions of the Hénon equation |
| spellingShingle |
Qualitative properties of radial solutions of the Hénon equation Silva, Wendel Leite da Asymptotic behavior Comportamento assintótico Equação de Hénon Equações elípticas semilineares Hénon equation Índice de Morse Morse index Nodal radial solutions Semilinear elliptic equations Soluções radiais nodais |
| title_short |
Qualitative properties of radial solutions of the Hénon equation |
| title_full |
Qualitative properties of radial solutions of the Hénon equation |
| title_fullStr |
Qualitative properties of radial solutions of the Hénon equation |
| title_full_unstemmed |
Qualitative properties of radial solutions of the Hénon equation |
| title_sort |
Qualitative properties of radial solutions of the Hénon equation |
| author |
Silva, Wendel Leite da |
| author_facet |
Silva, Wendel Leite da |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Santos, Ederson Moreira dos |
| dc.contributor.author.fl_str_mv |
Silva, Wendel Leite da |
| dc.subject.por.fl_str_mv |
Asymptotic behavior Comportamento assintótico Equação de Hénon Equações elípticas semilineares Hénon equation Índice de Morse Morse index Nodal radial solutions Semilinear elliptic equations Soluções radiais nodais |
| topic |
Asymptotic behavior Comportamento assintótico Equação de Hénon Equações elípticas semilineares Hénon equation Índice de Morse Morse index Nodal radial solutions Semilinear elliptic equations Soluções radiais nodais |
| description |
In this work, we study qualitative properties of radial solutions to the Hénon problem { - Δu = ΙxΙαΙuΙp-1 in B; u = 0 on ∂B; where B ⊂ RN is the unit ball centered at the origin, N ≥ 2, α ≥ 0 and p > 1. We obtained results about the computation of the Morse index and the asymptotic profile, as α → ∞, of both positive and sign changing radial solutions. More precisely, we divided this work into two parts. Firstly, considering the case N = 2, we proved that the Morse index of the radial solutions uα, with the same number of nodal sets, is monotone non-decreasing with respect to α. Moreover, we present a lower bound for the Morse indices m(uα), which is better than those that already exist in the literature, showing in particular that m(uα) → ∞ as α → ∞. Secondly, considering N ≥ 3, we show that the two-dimensional Lane-Emden equation can be seen as a limit problem for the Hénon equation. Finally, we used this fact to obtain some qualitative consequences of these solutions. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-03-05 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-095419/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19032020-095419/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258294444359680 |