Leveraging Semantic Web Technologies in Healthcare: Development of OntoDrug for Medication Ontology, Prescription Recognition Systems, and Cancer Staging Applications

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Miranda, Nelson Julio de Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-25042025-085137/
Resumo: This PhD thesis, structured as a collection of articles, investigates the application of Semantic Web technologies, ontologies, and Large Language Models (LLMs) to tackle important issues in healthcare, specifically in medication management and cancer staging. Every article within this thesis brings forward distinct advancements in these fields. The initial article offers an extensive examination of Semantic Web technologies in the healthcare sector, emphasizing their contribution to improving data interoperability in Electronic Health Records (EHRs). This scoping review highlights progress made with technologies such as RDF, OWL, and SPARQL, as well as difficulties that impede wider acceptance. The second article focuses on cancer staging and introduces an ontology-based TNM classifier tailored for liver cancer. This classifier, based on the AIM4-O ontology, standardizes image annotations to automate cancer staging. With a precision of 85.7% and recall of 81.0%, the TNM classifier aligns closely with physician-assigned stages, demonstrating the efficacy of an automated, ontology-based approach in oncology. The third article examines the application of a novel ontology, OntoDrug, in regulatory compliance, specifically within the field of otorhinolaryngology. OntoDrug was developed to enhance medication management in Brazil. By standardizing regulatory lists and supporting data interoperability within EHR systems, OntoDrug enables safer and more accurate medication management. This study demonstrates high accuracy in identifying medications, achieving a 94.5% success rate, with 61% full recognition and 33.5% partial recognition. These findings highlight the effectiveness of combining Natural Language Processing (NLP) with ontological frameworks to ensure medication safety and accuracy. In the final article, we describe the OntoDrug in more detail and examine how OntoDrug can be integrated with LLMs. OntoDrug with LLMs achieved exceptional results in identifying medications from free-text prescriptions, with GPT-4 turbo achieving 100% recall and 97% precision. This performance underscores OntoDrugs potential to advance medication recognition and enhance patient safety within clinical environments. Together, these articles illustrate how machines can more effectively understand and reason about clinical data using these technologies to offer better cancer staging and more accurate medicine identification.
id USP_e13a00f463b4080b159a767395d8f9cf
oai_identifier_str oai:teses.usp.br:tde-25042025-085137
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Leveraging Semantic Web Technologies in Healthcare: Development of OntoDrug for Medication Ontology, Prescription Recognition Systems, and Cancer Staging ApplicationsAproveitando Tecnologias da Web Semântica na Saúde: Desenvolvimento da OntoDrug para Ontologia de Medicamentos, Sistemas de Reconhecimento de Prescrição e Aplicações de Estadiamento de CâncerCancer stagingEstadiamento do câncerGerenciamento de medicamentosLarge language models (LLMs)Medication managementModelos de linguagem de grande escala (LLMs)OntologiasOntologiesSemantic webWeb semânticaThis PhD thesis, structured as a collection of articles, investigates the application of Semantic Web technologies, ontologies, and Large Language Models (LLMs) to tackle important issues in healthcare, specifically in medication management and cancer staging. Every article within this thesis brings forward distinct advancements in these fields. The initial article offers an extensive examination of Semantic Web technologies in the healthcare sector, emphasizing their contribution to improving data interoperability in Electronic Health Records (EHRs). This scoping review highlights progress made with technologies such as RDF, OWL, and SPARQL, as well as difficulties that impede wider acceptance. The second article focuses on cancer staging and introduces an ontology-based TNM classifier tailored for liver cancer. This classifier, based on the AIM4-O ontology, standardizes image annotations to automate cancer staging. With a precision of 85.7% and recall of 81.0%, the TNM classifier aligns closely with physician-assigned stages, demonstrating the efficacy of an automated, ontology-based approach in oncology. The third article examines the application of a novel ontology, OntoDrug, in regulatory compliance, specifically within the field of otorhinolaryngology. OntoDrug was developed to enhance medication management in Brazil. By standardizing regulatory lists and supporting data interoperability within EHR systems, OntoDrug enables safer and more accurate medication management. This study demonstrates high accuracy in identifying medications, achieving a 94.5% success rate, with 61% full recognition and 33.5% partial recognition. These findings highlight the effectiveness of combining Natural Language Processing (NLP) with ontological frameworks to ensure medication safety and accuracy. In the final article, we describe the OntoDrug in more detail and examine how OntoDrug can be integrated with LLMs. OntoDrug with LLMs achieved exceptional results in identifying medications from free-text prescriptions, with GPT-4 turbo achieving 100% recall and 97% precision. This performance underscores OntoDrugs potential to advance medication recognition and enhance patient safety within clinical environments. Together, these articles illustrate how machines can more effectively understand and reason about clinical data using these technologies to offer better cancer staging and more accurate medicine identification.Esta tese de doutorado, estruturada como uma coleção de artigos, investiga a aplicação de tecnologias da Web Semântica, ontologias e Modelos de Linguagem Ampla (LLMs) para enfrentar questões importantes na área da saúde, especificamente na gestão de medicamentos e no estadiamento de câncer. Cada artigo nesta tese apresenta avanços distintos nesses campos. O artigo inicial oferece um exame extensivo das tecnologias da Web Semântica no setor da saúde, enfatizando sua contribuição para melhorar a interoperabilidade de dados nos Registros Eletrônicos de Saúde (EHRs). Esta revisão de escopo destaca o progresso feito com tecnologias como RDF, OWL e SPARQL, bem como as dificuldades que impedem uma aceitação mais ampla. O segundo artigo concentra-se no estadiamento do câncer e introduz um classificador TNM baseado em ontologia, adaptado para o câncer de fígado. Este classificador, baseado na ontologia AIM4-O, padroniza anotações de imagem para automatizar o estadiamento do câncer. Com uma precisão de 85,7% e um recall de 81,0%, o classificador TNM alinhase estreitamente com os estágios atribuídos pelos médicos, demonstrando a eficácia de uma abordagem automatizada baseada em ontologia na oncologia. O terceiro artigo examina a aplicação de uma nova ontologia, OntoDrug, em conformidade regulatória, especificamente no campo da otorrinolaringologia. OntoDrug foi desenvolvida para melhorar a gestão de medicamentos no Brasil. Ao padronizar listas regulatórias e apoiar a interoperabilidade de dados nos sistemas de EHR, a OntoDrug possibilita uma gestão de medicamentos mais segura e precisa. Este estudo demonstra alta precisão na identificação de medicamentos, alcançando uma taxa de sucesso de 94,5%, com 61% de reconhecimento completo e 33,5% de reconhecimento parcial. Esses resultados destacam a eficácia de combinar Processamento de Linguagem Natural (NLP) com frameworks ontológicos para garantir segurança e precisão na administração de medicamentos. No artigo final, descrevemos a OntoDrug em mais detalhes e examinamos como a OntoDrug pode ser integrada com LLMs. A integração da OntoDrug com LLMs alcançou resultados excepcionais na identificação de medicamentos em prescrições de texto livre, com o GPT-4 turbo atingindo 100% de recall e 97% de precisão. Esse desempenho ressalta o potencial da OntoDrug para avançar no reconhecimento de medicamentos e melhorar a segurança dos pacientes em ambientes clínicos. Juntos, esses artigos ilustram como as máquinas podem entender e raciocinar de forma mais eficaz sobre dados clínicos usando essas tecnologias, oferecendo melhores estágios de câncer e identificação mais precisa de medicamentos.Biblioteca Digitais de Teses e Dissertações da USPMoreira, Dilvan de AbreuMiranda, Nelson Julio de Oliveira2024-12-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-25042025-085137/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-04-25T12:59:02Zoai:teses.usp.br:tde-25042025-085137Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-04-25T12:59:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Leveraging Semantic Web Technologies in Healthcare: Development of OntoDrug for Medication Ontology, Prescription Recognition Systems, and Cancer Staging Applications
Aproveitando Tecnologias da Web Semântica na Saúde: Desenvolvimento da OntoDrug para Ontologia de Medicamentos, Sistemas de Reconhecimento de Prescrição e Aplicações de Estadiamento de Câncer
title Leveraging Semantic Web Technologies in Healthcare: Development of OntoDrug for Medication Ontology, Prescription Recognition Systems, and Cancer Staging Applications
spellingShingle Leveraging Semantic Web Technologies in Healthcare: Development of OntoDrug for Medication Ontology, Prescription Recognition Systems, and Cancer Staging Applications
Miranda, Nelson Julio de Oliveira
Cancer staging
Estadiamento do câncer
Gerenciamento de medicamentos
Large language models (LLMs)
Medication management
Modelos de linguagem de grande escala (LLMs)
Ontologias
Ontologies
Semantic web
Web semântica
title_short Leveraging Semantic Web Technologies in Healthcare: Development of OntoDrug for Medication Ontology, Prescription Recognition Systems, and Cancer Staging Applications
title_full Leveraging Semantic Web Technologies in Healthcare: Development of OntoDrug for Medication Ontology, Prescription Recognition Systems, and Cancer Staging Applications
title_fullStr Leveraging Semantic Web Technologies in Healthcare: Development of OntoDrug for Medication Ontology, Prescription Recognition Systems, and Cancer Staging Applications
title_full_unstemmed Leveraging Semantic Web Technologies in Healthcare: Development of OntoDrug for Medication Ontology, Prescription Recognition Systems, and Cancer Staging Applications
title_sort Leveraging Semantic Web Technologies in Healthcare: Development of OntoDrug for Medication Ontology, Prescription Recognition Systems, and Cancer Staging Applications
author Miranda, Nelson Julio de Oliveira
author_facet Miranda, Nelson Julio de Oliveira
author_role author
dc.contributor.none.fl_str_mv Moreira, Dilvan de Abreu
dc.contributor.author.fl_str_mv Miranda, Nelson Julio de Oliveira
dc.subject.por.fl_str_mv Cancer staging
Estadiamento do câncer
Gerenciamento de medicamentos
Large language models (LLMs)
Medication management
Modelos de linguagem de grande escala (LLMs)
Ontologias
Ontologies
Semantic web
Web semântica
topic Cancer staging
Estadiamento do câncer
Gerenciamento de medicamentos
Large language models (LLMs)
Medication management
Modelos de linguagem de grande escala (LLMs)
Ontologias
Ontologies
Semantic web
Web semântica
description This PhD thesis, structured as a collection of articles, investigates the application of Semantic Web technologies, ontologies, and Large Language Models (LLMs) to tackle important issues in healthcare, specifically in medication management and cancer staging. Every article within this thesis brings forward distinct advancements in these fields. The initial article offers an extensive examination of Semantic Web technologies in the healthcare sector, emphasizing their contribution to improving data interoperability in Electronic Health Records (EHRs). This scoping review highlights progress made with technologies such as RDF, OWL, and SPARQL, as well as difficulties that impede wider acceptance. The second article focuses on cancer staging and introduces an ontology-based TNM classifier tailored for liver cancer. This classifier, based on the AIM4-O ontology, standardizes image annotations to automate cancer staging. With a precision of 85.7% and recall of 81.0%, the TNM classifier aligns closely with physician-assigned stages, demonstrating the efficacy of an automated, ontology-based approach in oncology. The third article examines the application of a novel ontology, OntoDrug, in regulatory compliance, specifically within the field of otorhinolaryngology. OntoDrug was developed to enhance medication management in Brazil. By standardizing regulatory lists and supporting data interoperability within EHR systems, OntoDrug enables safer and more accurate medication management. This study demonstrates high accuracy in identifying medications, achieving a 94.5% success rate, with 61% full recognition and 33.5% partial recognition. These findings highlight the effectiveness of combining Natural Language Processing (NLP) with ontological frameworks to ensure medication safety and accuracy. In the final article, we describe the OntoDrug in more detail and examine how OntoDrug can be integrated with LLMs. OntoDrug with LLMs achieved exceptional results in identifying medications from free-text prescriptions, with GPT-4 turbo achieving 100% recall and 97% precision. This performance underscores OntoDrugs potential to advance medication recognition and enhance patient safety within clinical environments. Together, these articles illustrate how machines can more effectively understand and reason about clinical data using these technologies to offer better cancer staging and more accurate medicine identification.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-25042025-085137/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-25042025-085137/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839158054420480