A comprehensive benchmark for single image deraining networks
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-20082025-192226/ |
Resumo: | Computer vision systems can be greatly affected by adverse weather conditions, such as rain and haze. The success achieved by popular models in common high-level vision tasks typically relies on clean weather images. However, in real world, such clean condition is not always available. In this context, many single image deraining algorithms have been proposed in order to remove image degradation caused by the presence of rain in the scene. This work presents a comprehensive study and evaluation of recent single-image deraining algorithms and their current limitations as well as conclusions drawn from a thorough investigation. We provide a robust and comprehensive analysis to guide a model proposal capable of overcoming the limitations of current state-of-the-art deraining algorithms. We collected a large-scale dataset including synthetic rainy images and real world rainy images separated by the rain type formation. Besides, we annotated real world rainy images to evaluate the raining and deraining impact on the detection task. This task-driven approach is a novelty on this work and it provides future research directions. |
| id |
USP_e7f0f7fea3e66f79b8b89de21c717546 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-20082025-192226 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
A comprehensive benchmark for single image deraining networksUma análise compreensiva de benchmark para redes deraining networksConvolutional neural networksDeep learningDeep learningDerainingDerainingMachine learningMachine learningRedes neurais convolucionaisComputer vision systems can be greatly affected by adverse weather conditions, such as rain and haze. The success achieved by popular models in common high-level vision tasks typically relies on clean weather images. However, in real world, such clean condition is not always available. In this context, many single image deraining algorithms have been proposed in order to remove image degradation caused by the presence of rain in the scene. This work presents a comprehensive study and evaluation of recent single-image deraining algorithms and their current limitations as well as conclusions drawn from a thorough investigation. We provide a robust and comprehensive analysis to guide a model proposal capable of overcoming the limitations of current state-of-the-art deraining algorithms. We collected a large-scale dataset including synthetic rainy images and real world rainy images separated by the rain type formation. Besides, we annotated real world rainy images to evaluate the raining and deraining impact on the detection task. This task-driven approach is a novelty on this work and it provides future research directions.não disponívelBiblioteca Digitais de Teses e Dissertações da USPCesar Junior, Roberto MarcondesAraujo, Iago Breno Alves do Carmo2019-10-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-20082025-192226/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-08-21T09:06:02Zoai:teses.usp.br:tde-20082025-192226Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-08-21T09:06:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
A comprehensive benchmark for single image deraining networks Uma análise compreensiva de benchmark para redes deraining networks |
| title |
A comprehensive benchmark for single image deraining networks |
| spellingShingle |
A comprehensive benchmark for single image deraining networks Araujo, Iago Breno Alves do Carmo Convolutional neural networks Deep learning Deep learning Deraining Deraining Machine learning Machine learning Redes neurais convolucionais |
| title_short |
A comprehensive benchmark for single image deraining networks |
| title_full |
A comprehensive benchmark for single image deraining networks |
| title_fullStr |
A comprehensive benchmark for single image deraining networks |
| title_full_unstemmed |
A comprehensive benchmark for single image deraining networks |
| title_sort |
A comprehensive benchmark for single image deraining networks |
| author |
Araujo, Iago Breno Alves do Carmo |
| author_facet |
Araujo, Iago Breno Alves do Carmo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cesar Junior, Roberto Marcondes |
| dc.contributor.author.fl_str_mv |
Araujo, Iago Breno Alves do Carmo |
| dc.subject.por.fl_str_mv |
Convolutional neural networks Deep learning Deep learning Deraining Deraining Machine learning Machine learning Redes neurais convolucionais |
| topic |
Convolutional neural networks Deep learning Deep learning Deraining Deraining Machine learning Machine learning Redes neurais convolucionais |
| description |
Computer vision systems can be greatly affected by adverse weather conditions, such as rain and haze. The success achieved by popular models in common high-level vision tasks typically relies on clean weather images. However, in real world, such clean condition is not always available. In this context, many single image deraining algorithms have been proposed in order to remove image degradation caused by the presence of rain in the scene. This work presents a comprehensive study and evaluation of recent single-image deraining algorithms and their current limitations as well as conclusions drawn from a thorough investigation. We provide a robust and comprehensive analysis to guide a model proposal capable of overcoming the limitations of current state-of-the-art deraining algorithms. We collected a large-scale dataset including synthetic rainy images and real world rainy images separated by the rain type formation. Besides, we annotated real world rainy images to evaluate the raining and deraining impact on the detection task. This task-driven approach is a novelty on this work and it provides future research directions. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-10-03 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-20082025-192226/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-20082025-192226/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1848370487116169216 |