Vidros de spin com interação de multispins em campos aleatórios

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Oliveira Filho, Luiz Ozorio de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-06032014-143135/
Resumo: Estudamos o efeito do campo aleatório sobre um modelo de vidro de spin com interações de p spins de alcance infinito e distribuição de probabilidade gaussiana. O caso p = 2 corresponde ao modelo de Sherrington-Kirkpatrick na presença de um campo aleatório. O caso p \'SETA\' \'INFINITO\' corresponde ao REM (Random Energy Model) de Derrida na presença de um campo aleatório. Além da interação de p spins, consideramos a presença de interações uniformes ferro ou antiferromagnéticas de alcance infinito. Tanto no caso ferro quanto antiferromagnético, empregamos dois procedimentos para tratar o problema: o método de réplicas no ensemble canônico e o método da contagem de estados no ensemble microcanônico. No método de réplicas resolvemos o problema para qualquer valor de p tanto sem quebra da simetria de permutação entre réplicas, quanto com um passo de quebra de simetria de Parisi. Deste modo, recuperamos resultados conhecidos para alguns modelos já estudados na literatura. Em seguida, tomamos o limite p \'SETA\' \'INFINITO\' que fornece uma solução completa para o problema do REM na presença de um campo aleatório. No método da contagem de estados, aplicável apenas no limite p \'SETA\' \'INFINITO\', mostramos que podemos estender a solução de Derrida mesmo na presença de um campo aleatório. Isso nos permitiu fazer a contagem de estados evitando assim o problema da \"catástrofe da entropia negativa\" presenta na solução réplica simétrica. Além disso, mostramos que qualquer sistema que seja solúvel sem a interação aleatória de p spins continua solúvel na presença dessa interação no limite p \'SETA\' \'INFINITO\'. Portanto, concluímos que a interação aleatória de p spins é somente adicionar um carácter vidro de spin ao sistema. Obtivemos expressões gerais válidas para qualquer distribuição do campo aleatório, embora a análise numérica tenha sido restrita às distribuições duplo-delta e gaussiana. Estudamos a influência do campo aleatório sobre os diagramas de fases e, em particular, mostramos que podem surgir pontos tricríticos no caso de uma distribuição duplo-delta.
id USP_ec5a0041d889ba3ef36b0b156813da82
oai_identifier_str oai:teses.usp.br:tde-06032014-143135
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Vidros de spin com interação de multispins em campos aleatóriosSpin Glasses Multispins Interactions Random FieldsCondensed matter physicsDisordered systemsFísica da matéria condensadaSistemas desordenadosEstudamos o efeito do campo aleatório sobre um modelo de vidro de spin com interações de p spins de alcance infinito e distribuição de probabilidade gaussiana. O caso p = 2 corresponde ao modelo de Sherrington-Kirkpatrick na presença de um campo aleatório. O caso p \'SETA\' \'INFINITO\' corresponde ao REM (Random Energy Model) de Derrida na presença de um campo aleatório. Além da interação de p spins, consideramos a presença de interações uniformes ferro ou antiferromagnéticas de alcance infinito. Tanto no caso ferro quanto antiferromagnético, empregamos dois procedimentos para tratar o problema: o método de réplicas no ensemble canônico e o método da contagem de estados no ensemble microcanônico. No método de réplicas resolvemos o problema para qualquer valor de p tanto sem quebra da simetria de permutação entre réplicas, quanto com um passo de quebra de simetria de Parisi. Deste modo, recuperamos resultados conhecidos para alguns modelos já estudados na literatura. Em seguida, tomamos o limite p \'SETA\' \'INFINITO\' que fornece uma solução completa para o problema do REM na presença de um campo aleatório. No método da contagem de estados, aplicável apenas no limite p \'SETA\' \'INFINITO\', mostramos que podemos estender a solução de Derrida mesmo na presença de um campo aleatório. Isso nos permitiu fazer a contagem de estados evitando assim o problema da \"catástrofe da entropia negativa\" presenta na solução réplica simétrica. Além disso, mostramos que qualquer sistema que seja solúvel sem a interação aleatória de p spins continua solúvel na presença dessa interação no limite p \'SETA\' \'INFINITO\'. Portanto, concluímos que a interação aleatória de p spins é somente adicionar um carácter vidro de spin ao sistema. Obtivemos expressões gerais válidas para qualquer distribuição do campo aleatório, embora a análise numérica tenha sido restrita às distribuições duplo-delta e gaussiana. Estudamos a influência do campo aleatório sobre os diagramas de fases e, em particular, mostramos que podem surgir pontos tricríticos no caso de uma distribuição duplo-delta.We studied the effect of a random field on spin-glass models with infinite-ranged p spin interactions with a Gaussian probability distribution. The case p = 2 corresponds to the Sherrington-Kirkpatrick model in the presence of a random field. The case p \'SETA\' \'INFINITO\' corresponds to the REM (Random Energy Model) introduced by Derrida in the presence of a random field. Besides the p-spin interactions we also included uniform infinite-ranged ferromagnetic and antiferromagnetic interactions. Both in the case of ferromagnetic and antiferromagnetic interactions we employed two different approaches: The replica method in the canonical ensemble and the method of counting of the states in the microcanonical ensemble. In the replica method we solved the problem for arbitrary p both in the case of replica symmetry and in the first step of Parisi\'s replica-symmetry breaking scheme. This allowed us to rederive results for some models already known in the Literature. Next we took the limit p \'SETA\' \'INFINITO\' which yielded a complete solution to the REM in a random field. In the method of counting of the states, which is effective only in the limit p \'SETA\' \'INFINITO\', we showed that we can extend the Derrida\'s solution even in the presence of a random field. This allowed us to do the counting of the states avoiding the so called negative-entropy catastrophe present in the replica-symmetric solution. We also showed that any solvable model without random p-spin interactions is also solvable in the presence of such interactions in the limit p \'SETA\' \'INFINITO\'. Therefore, we conclude that the p-spin random interactions only add a spin-glass character to the system. We have obtained general expressions valid for any random-field distributions, although we limited the numerical analysis to double-delta and Gaussian distributions. We studied the effects of the random field on the phase diagrams, and in particular, we showed the possibility of tricritical point in the case of double-delta distributions.Biblioteca Digitais de Teses e Dissertações da USPYokoi, Carlos Seihiti OriiOliveira Filho, Luiz Ozorio de2005-03-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-06032014-143135/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:47Zoai:teses.usp.br:tde-06032014-143135Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Vidros de spin com interação de multispins em campos aleatórios
Spin Glasses Multispins Interactions Random Fields
title Vidros de spin com interação de multispins em campos aleatórios
spellingShingle Vidros de spin com interação de multispins em campos aleatórios
Oliveira Filho, Luiz Ozorio de
Condensed matter physics
Disordered systems
Física da matéria condensada
Sistemas desordenados
title_short Vidros de spin com interação de multispins em campos aleatórios
title_full Vidros de spin com interação de multispins em campos aleatórios
title_fullStr Vidros de spin com interação de multispins em campos aleatórios
title_full_unstemmed Vidros de spin com interação de multispins em campos aleatórios
title_sort Vidros de spin com interação de multispins em campos aleatórios
author Oliveira Filho, Luiz Ozorio de
author_facet Oliveira Filho, Luiz Ozorio de
author_role author
dc.contributor.none.fl_str_mv Yokoi, Carlos Seihiti Orii
dc.contributor.author.fl_str_mv Oliveira Filho, Luiz Ozorio de
dc.subject.por.fl_str_mv Condensed matter physics
Disordered systems
Física da matéria condensada
Sistemas desordenados
topic Condensed matter physics
Disordered systems
Física da matéria condensada
Sistemas desordenados
description Estudamos o efeito do campo aleatório sobre um modelo de vidro de spin com interações de p spins de alcance infinito e distribuição de probabilidade gaussiana. O caso p = 2 corresponde ao modelo de Sherrington-Kirkpatrick na presença de um campo aleatório. O caso p \'SETA\' \'INFINITO\' corresponde ao REM (Random Energy Model) de Derrida na presença de um campo aleatório. Além da interação de p spins, consideramos a presença de interações uniformes ferro ou antiferromagnéticas de alcance infinito. Tanto no caso ferro quanto antiferromagnético, empregamos dois procedimentos para tratar o problema: o método de réplicas no ensemble canônico e o método da contagem de estados no ensemble microcanônico. No método de réplicas resolvemos o problema para qualquer valor de p tanto sem quebra da simetria de permutação entre réplicas, quanto com um passo de quebra de simetria de Parisi. Deste modo, recuperamos resultados conhecidos para alguns modelos já estudados na literatura. Em seguida, tomamos o limite p \'SETA\' \'INFINITO\' que fornece uma solução completa para o problema do REM na presença de um campo aleatório. No método da contagem de estados, aplicável apenas no limite p \'SETA\' \'INFINITO\', mostramos que podemos estender a solução de Derrida mesmo na presença de um campo aleatório. Isso nos permitiu fazer a contagem de estados evitando assim o problema da \"catástrofe da entropia negativa\" presenta na solução réplica simétrica. Além disso, mostramos que qualquer sistema que seja solúvel sem a interação aleatória de p spins continua solúvel na presença dessa interação no limite p \'SETA\' \'INFINITO\'. Portanto, concluímos que a interação aleatória de p spins é somente adicionar um carácter vidro de spin ao sistema. Obtivemos expressões gerais válidas para qualquer distribuição do campo aleatório, embora a análise numérica tenha sido restrita às distribuições duplo-delta e gaussiana. Estudamos a influência do campo aleatório sobre os diagramas de fases e, em particular, mostramos que podem surgir pontos tricríticos no caso de uma distribuição duplo-delta.
publishDate 2005
dc.date.none.fl_str_mv 2005-03-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-06032014-143135/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-06032014-143135/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257938216878080