Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Brito, Ana Caroline Medeiros
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-24102025-112509/
Resumo: Scientometrics is an area of study focused on studying Science itself, being common studies in the subareas of citation analysis, scientific mapping, collaboration network analysis, and bibliometrics. During this doctorate, the works developed, although distinct from each other, have as a common objective analyses that enrich our understanding of academic success using mainly complex network techniques and natural language processing as a basis. The works in this collection consisted of: (1) a study on interdisciplinarity, based on citations and references, of researchers and how this measure relates to other measures of visibility and performance; (2) a work about collaborations between authors, defining the top-collaborator of a researcher, we extended this analysis to a large set of researchers, grouping them by research area and observing how the performance measures were impacted by the removal of productions developed with the top-collaborators; (3) application of a framework based on complex networks and natural language processing to two case studies of Chemistry journals, where we were able to obtain overviews of the development of this area; (4) a detailed analysis of online viewing data of articles from the journal PLoS ONE, using statistical analysis and the use of clustering techniques, to characterize these curves, reinforcing the importance of other measures alternative to traditional bibliometrics to understand the dynamics of interest to the academic community. In general, with these works, we expanded our understanding of scientific development from different perspectives, mainly related to academic success measured by citations.
id USP_eed66786bcc2e23f2d006cf1fbf82a62
oai_identifier_str oai:teses.usp.br:tde-24102025-112509
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Using Complex Networks and Natural Language Processing to Characterize and Predict Academic SuccessUsando Redes Complexas e Processamento de Línguas Naturais para Caracterização e Previsão de Sucesso na CiênciaAcademic successCienciometriaComplex networksNatural language processingProcessamento de linguagem naturalRedes complexasScientometricsSucesso acadêmicoScientometrics is an area of study focused on studying Science itself, being common studies in the subareas of citation analysis, scientific mapping, collaboration network analysis, and bibliometrics. During this doctorate, the works developed, although distinct from each other, have as a common objective analyses that enrich our understanding of academic success using mainly complex network techniques and natural language processing as a basis. The works in this collection consisted of: (1) a study on interdisciplinarity, based on citations and references, of researchers and how this measure relates to other measures of visibility and performance; (2) a work about collaborations between authors, defining the top-collaborator of a researcher, we extended this analysis to a large set of researchers, grouping them by research area and observing how the performance measures were impacted by the removal of productions developed with the top-collaborators; (3) application of a framework based on complex networks and natural language processing to two case studies of Chemistry journals, where we were able to obtain overviews of the development of this area; (4) a detailed analysis of online viewing data of articles from the journal PLoS ONE, using statistical analysis and the use of clustering techniques, to characterize these curves, reinforcing the importance of other measures alternative to traditional bibliometrics to understand the dynamics of interest to the academic community. In general, with these works, we expanded our understanding of scientific development from different perspectives, mainly related to academic success measured by citations.Cienciometria é uma área de estudo focada em estudar a própria Ciência, sendo comum estudos nas subáreas de análise de citações, mapeamento científico, análise de redes de colaborações e bibliometria. Durante este doutorado, os trabalhos desenvolvidos, apesar de distintos entre si, apresentam como comum objetivo análises que enriquecem nossa compreensão a respeito de sucesso acadêmico, usando como base principalmente técnicas de redes complexas e processamento de linguagem natural. Os trabalhos dessa coleção consistem em: (1) um estudo sobre interdisciplinaridade, baseada em citações e referências, dos pesquisadores e como essa medida se relaciona com outras medidas de visibilidade e desempenho; (2) um trabalho sobre as colaborações entre autores, definindo o que seria o principal colaborador de um pesquisador, estendemos essa análise para um grande conjunto de pesquisadores, agrupando-os por área de pesquisa e observamos como as medidas de desempenho foram impactadas pela remoção das produções desenvolvidas com os principais colaboradores; (3) aplicação de um framework baseado em redes complexas e processamento de linguagem natural para dois estudos de caso de revistas da área da Química, onde conseguimos obter panoramas do desenvolvimento dessa área; (4) uma análise detalhada de dados de visualização online de artigos da revista PLoS One, envolvendo análise estatística e uso de técnicas de agrupamento para caracterização dessas curvas, reforçando a importância de outras medidas alternativas às tradicionais de bibliometria para entender as dinâmicas de interesse da comunidade acadêmica. De forma geral, com esses trabalhos, ampliamos nosso entendimento a respeito do desenvolvimento científico por diferentes perspectivas, relacionado principalmente ao sucesso acadêmico medido com citações.Biblioteca Digitais de Teses e Dissertações da USPAmancio, Diego RaphaelBrito, Ana Caroline Medeiros2025-08-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-24102025-112509/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-10-24T13:30:02Zoai:teses.usp.br:tde-24102025-112509Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-10-24T13:30:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success
Usando Redes Complexas e Processamento de Línguas Naturais para Caracterização e Previsão de Sucesso na Ciência
title Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success
spellingShingle Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success
Brito, Ana Caroline Medeiros
Academic success
Cienciometria
Complex networks
Natural language processing
Processamento de linguagem natural
Redes complexas
Scientometrics
Sucesso acadêmico
title_short Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success
title_full Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success
title_fullStr Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success
title_full_unstemmed Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success
title_sort Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success
author Brito, Ana Caroline Medeiros
author_facet Brito, Ana Caroline Medeiros
author_role author
dc.contributor.none.fl_str_mv Amancio, Diego Raphael
dc.contributor.author.fl_str_mv Brito, Ana Caroline Medeiros
dc.subject.por.fl_str_mv Academic success
Cienciometria
Complex networks
Natural language processing
Processamento de linguagem natural
Redes complexas
Scientometrics
Sucesso acadêmico
topic Academic success
Cienciometria
Complex networks
Natural language processing
Processamento de linguagem natural
Redes complexas
Scientometrics
Sucesso acadêmico
description Scientometrics is an area of study focused on studying Science itself, being common studies in the subareas of citation analysis, scientific mapping, collaboration network analysis, and bibliometrics. During this doctorate, the works developed, although distinct from each other, have as a common objective analyses that enrich our understanding of academic success using mainly complex network techniques and natural language processing as a basis. The works in this collection consisted of: (1) a study on interdisciplinarity, based on citations and references, of researchers and how this measure relates to other measures of visibility and performance; (2) a work about collaborations between authors, defining the top-collaborator of a researcher, we extended this analysis to a large set of researchers, grouping them by research area and observing how the performance measures were impacted by the removal of productions developed with the top-collaborators; (3) application of a framework based on complex networks and natural language processing to two case studies of Chemistry journals, where we were able to obtain overviews of the development of this area; (4) a detailed analysis of online viewing data of articles from the journal PLoS ONE, using statistical analysis and the use of clustering techniques, to characterize these curves, reinforcing the importance of other measures alternative to traditional bibliometrics to understand the dynamics of interest to the academic community. In general, with these works, we expanded our understanding of scientific development from different perspectives, mainly related to academic success measured by citations.
publishDate 2025
dc.date.none.fl_str_mv 2025-08-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-24102025-112509/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-24102025-112509/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1848370477093879808