Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-24102025-112509/ |
Resumo: | Scientometrics is an area of study focused on studying Science itself, being common studies in the subareas of citation analysis, scientific mapping, collaboration network analysis, and bibliometrics. During this doctorate, the works developed, although distinct from each other, have as a common objective analyses that enrich our understanding of academic success using mainly complex network techniques and natural language processing as a basis. The works in this collection consisted of: (1) a study on interdisciplinarity, based on citations and references, of researchers and how this measure relates to other measures of visibility and performance; (2) a work about collaborations between authors, defining the top-collaborator of a researcher, we extended this analysis to a large set of researchers, grouping them by research area and observing how the performance measures were impacted by the removal of productions developed with the top-collaborators; (3) application of a framework based on complex networks and natural language processing to two case studies of Chemistry journals, where we were able to obtain overviews of the development of this area; (4) a detailed analysis of online viewing data of articles from the journal PLoS ONE, using statistical analysis and the use of clustering techniques, to characterize these curves, reinforcing the importance of other measures alternative to traditional bibliometrics to understand the dynamics of interest to the academic community. In general, with these works, we expanded our understanding of scientific development from different perspectives, mainly related to academic success measured by citations. |
| id |
USP_eed66786bcc2e23f2d006cf1fbf82a62 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-24102025-112509 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Using Complex Networks and Natural Language Processing to Characterize and Predict Academic SuccessUsando Redes Complexas e Processamento de Línguas Naturais para Caracterização e Previsão de Sucesso na CiênciaAcademic successCienciometriaComplex networksNatural language processingProcessamento de linguagem naturalRedes complexasScientometricsSucesso acadêmicoScientometrics is an area of study focused on studying Science itself, being common studies in the subareas of citation analysis, scientific mapping, collaboration network analysis, and bibliometrics. During this doctorate, the works developed, although distinct from each other, have as a common objective analyses that enrich our understanding of academic success using mainly complex network techniques and natural language processing as a basis. The works in this collection consisted of: (1) a study on interdisciplinarity, based on citations and references, of researchers and how this measure relates to other measures of visibility and performance; (2) a work about collaborations between authors, defining the top-collaborator of a researcher, we extended this analysis to a large set of researchers, grouping them by research area and observing how the performance measures were impacted by the removal of productions developed with the top-collaborators; (3) application of a framework based on complex networks and natural language processing to two case studies of Chemistry journals, where we were able to obtain overviews of the development of this area; (4) a detailed analysis of online viewing data of articles from the journal PLoS ONE, using statistical analysis and the use of clustering techniques, to characterize these curves, reinforcing the importance of other measures alternative to traditional bibliometrics to understand the dynamics of interest to the academic community. In general, with these works, we expanded our understanding of scientific development from different perspectives, mainly related to academic success measured by citations.Cienciometria é uma área de estudo focada em estudar a própria Ciência, sendo comum estudos nas subáreas de análise de citações, mapeamento científico, análise de redes de colaborações e bibliometria. Durante este doutorado, os trabalhos desenvolvidos, apesar de distintos entre si, apresentam como comum objetivo análises que enriquecem nossa compreensão a respeito de sucesso acadêmico, usando como base principalmente técnicas de redes complexas e processamento de linguagem natural. Os trabalhos dessa coleção consistem em: (1) um estudo sobre interdisciplinaridade, baseada em citações e referências, dos pesquisadores e como essa medida se relaciona com outras medidas de visibilidade e desempenho; (2) um trabalho sobre as colaborações entre autores, definindo o que seria o principal colaborador de um pesquisador, estendemos essa análise para um grande conjunto de pesquisadores, agrupando-os por área de pesquisa e observamos como as medidas de desempenho foram impactadas pela remoção das produções desenvolvidas com os principais colaboradores; (3) aplicação de um framework baseado em redes complexas e processamento de linguagem natural para dois estudos de caso de revistas da área da Química, onde conseguimos obter panoramas do desenvolvimento dessa área; (4) uma análise detalhada de dados de visualização online de artigos da revista PLoS One, envolvendo análise estatística e uso de técnicas de agrupamento para caracterização dessas curvas, reforçando a importância de outras medidas alternativas às tradicionais de bibliometria para entender as dinâmicas de interesse da comunidade acadêmica. De forma geral, com esses trabalhos, ampliamos nosso entendimento a respeito do desenvolvimento científico por diferentes perspectivas, relacionado principalmente ao sucesso acadêmico medido com citações.Biblioteca Digitais de Teses e Dissertações da USPAmancio, Diego RaphaelBrito, Ana Caroline Medeiros2025-08-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-24102025-112509/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-10-24T13:30:02Zoai:teses.usp.br:tde-24102025-112509Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-10-24T13:30:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success Usando Redes Complexas e Processamento de Línguas Naturais para Caracterização e Previsão de Sucesso na Ciência |
| title |
Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success |
| spellingShingle |
Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success Brito, Ana Caroline Medeiros Academic success Cienciometria Complex networks Natural language processing Processamento de linguagem natural Redes complexas Scientometrics Sucesso acadêmico |
| title_short |
Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success |
| title_full |
Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success |
| title_fullStr |
Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success |
| title_full_unstemmed |
Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success |
| title_sort |
Using Complex Networks and Natural Language Processing to Characterize and Predict Academic Success |
| author |
Brito, Ana Caroline Medeiros |
| author_facet |
Brito, Ana Caroline Medeiros |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Amancio, Diego Raphael |
| dc.contributor.author.fl_str_mv |
Brito, Ana Caroline Medeiros |
| dc.subject.por.fl_str_mv |
Academic success Cienciometria Complex networks Natural language processing Processamento de linguagem natural Redes complexas Scientometrics Sucesso acadêmico |
| topic |
Academic success Cienciometria Complex networks Natural language processing Processamento de linguagem natural Redes complexas Scientometrics Sucesso acadêmico |
| description |
Scientometrics is an area of study focused on studying Science itself, being common studies in the subareas of citation analysis, scientific mapping, collaboration network analysis, and bibliometrics. During this doctorate, the works developed, although distinct from each other, have as a common objective analyses that enrich our understanding of academic success using mainly complex network techniques and natural language processing as a basis. The works in this collection consisted of: (1) a study on interdisciplinarity, based on citations and references, of researchers and how this measure relates to other measures of visibility and performance; (2) a work about collaborations between authors, defining the top-collaborator of a researcher, we extended this analysis to a large set of researchers, grouping them by research area and observing how the performance measures were impacted by the removal of productions developed with the top-collaborators; (3) application of a framework based on complex networks and natural language processing to two case studies of Chemistry journals, where we were able to obtain overviews of the development of this area; (4) a detailed analysis of online viewing data of articles from the journal PLoS ONE, using statistical analysis and the use of clustering techniques, to characterize these curves, reinforcing the importance of other measures alternative to traditional bibliometrics to understand the dynamics of interest to the academic community. In general, with these works, we expanded our understanding of scientific development from different perspectives, mainly related to academic success measured by citations. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-08-14 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-24102025-112509/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-24102025-112509/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1848370477093879808 |