Limites de seqüências de permutações de inteiros

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Sampaio, Rudini Menezes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-08122008-163417/
Resumo: Nesta tese, introduzimos o conceito de sequência convergente de permutações e provamos a existência de um objeto limite para tais sequências. Introduzimos ainda um novo modelo de permutação aleatória baseado em tais objetos e introduzimos um conceito novo de distância entre permutações. Provamos então que sequências de permutações aleatórias são convergentes e provamos a equivalência entre esta noção de convergência e convergência nesta nova distância. Obtemos ainda resultados de amostragem e quase-aleatoriedade para permutações. Provamos também uma caracterização para parâmetros testáveis de permutações.
id USP_f109613d0b98c48b4f3a6a3f1eb74cc6
oai_identifier_str oai:teses.usp.br:tde-08122008-163417
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Limites de seqüências de permutações de inteirosLimits of permutation sequencesconvergent sequencesdensidade de subpermutaçõesdensity of subpermutationsLema da regularidadelimit objectobjeto limitepermutaçõespermutationsquase-aleatoriedadequasirandomnessRegularity lemmasequências convergentestestabilidadetestabilityNesta tese, introduzimos o conceito de sequência convergente de permutações e provamos a existência de um objeto limite para tais sequências. Introduzimos ainda um novo modelo de permutação aleatória baseado em tais objetos e introduzimos um conceito novo de distância entre permutações. Provamos então que sequências de permutações aleatórias são convergentes e provamos a equivalência entre esta noção de convergência e convergência nesta nova distância. Obtemos ainda resultados de amostragem e quase-aleatoriedade para permutações. Provamos também uma caracterização para parâmetros testáveis de permutações.We introduce the concept of convergent sequence of permutations and we prove the existence of a limit object for these sequences. We also introduce a new and more general model of random permutation based on these limit objects and we introduce a new metric for permutations. We also prove that sequences of random permutations are convergent and we prove the equivalence between this notion of convergence and convergence in this new metric. We also show some applications for samplig and quasirandomness. We also prove a characterization for testable parameters of permutations.Biblioteca Digitais de Teses e Dissertações da USPKohayakawa, YoshiharuSampaio, Rudini Menezes2008-11-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-08122008-163417/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:57Zoai:teses.usp.br:tde-08122008-163417Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Limites de seqüências de permutações de inteiros
Limits of permutation sequences
title Limites de seqüências de permutações de inteiros
spellingShingle Limites de seqüências de permutações de inteiros
Sampaio, Rudini Menezes
convergent sequences
densidade de subpermutações
density of subpermutations
Lema da regularidade
limit object
objeto limite
permutações
permutations
quase-aleatoriedade
quasirandomness
Regularity lemma
sequências convergentes
testabilidade
testability
title_short Limites de seqüências de permutações de inteiros
title_full Limites de seqüências de permutações de inteiros
title_fullStr Limites de seqüências de permutações de inteiros
title_full_unstemmed Limites de seqüências de permutações de inteiros
title_sort Limites de seqüências de permutações de inteiros
author Sampaio, Rudini Menezes
author_facet Sampaio, Rudini Menezes
author_role author
dc.contributor.none.fl_str_mv Kohayakawa, Yoshiharu
dc.contributor.author.fl_str_mv Sampaio, Rudini Menezes
dc.subject.por.fl_str_mv convergent sequences
densidade de subpermutações
density of subpermutations
Lema da regularidade
limit object
objeto limite
permutações
permutations
quase-aleatoriedade
quasirandomness
Regularity lemma
sequências convergentes
testabilidade
testability
topic convergent sequences
densidade de subpermutações
density of subpermutations
Lema da regularidade
limit object
objeto limite
permutações
permutations
quase-aleatoriedade
quasirandomness
Regularity lemma
sequências convergentes
testabilidade
testability
description Nesta tese, introduzimos o conceito de sequência convergente de permutações e provamos a existência de um objeto limite para tais sequências. Introduzimos ainda um novo modelo de permutação aleatória baseado em tais objetos e introduzimos um conceito novo de distância entre permutações. Provamos então que sequências de permutações aleatórias são convergentes e provamos a equivalência entre esta noção de convergência e convergência nesta nova distância. Obtemos ainda resultados de amostragem e quase-aleatoriedade para permutações. Provamos também uma caracterização para parâmetros testáveis de permutações.
publishDate 2008
dc.date.none.fl_str_mv 2008-11-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-08122008-163417/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-08122008-163417/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257988732026880