MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genes

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Kashiwabara, André Yoshiaki
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-02042012-184145/
Resumo: O desafio de encontrar corretamente genes eucarioticos codificadores de proteinas nas sequencias genomicas e um problema em aberto. Neste trabalho, implementamos uma plata- forma, com o objetivo de melhorar a forma com que preditores de genes sao implementados e avaliados. Tres novas ferramentas foram implementadas: ToPS (Toolkit of Probabilistic Models of Sequences) foi o primeiro arcabouco orientado a objetos que fornece ferramentas para implementacao, manipulacao, e combinacao de modelos probabilisticos para representar sequencias de simbolos; MYOP (Make Your Own Predictor) e um sistema que tem como objetivo facilitar a construcao de preditores de genes; e SGEval utiliza grafos de splicing para comparar diferente anotacoes com eventos de splicing alternativos. Utilizamos nossas ferramentas para o desenvolvimentos de preditores de genes em onze genomas distintos: A. thaliana, C. elegans, Z. mays, P. falciparum, D. melanogaster, D. rerio, M. musculus, R. norvegicus, O. sativa, G. max e H. sapiens. Com esse desenvolvimento, estabelecemos um protocolo para implementacao de novos preditores. Alem disso, utilizando a nossa plata- forma, desenvolvemos um fluxo de trabalho para predicao de genes no projeto do genoma da cana de acucar, que ja foi utilizado em 109 sequencias de BAC geradas pelo BIOEN (FAPESP Bioenergy Program).
id USP_fbb9d58dbac52646c2712189de93d520
oai_identifier_str oai:teses.usp.br:tde-02042012-184145
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genesMYOP/ToPS/SGEval: A computational framework for gene predictionab initio gene predictionBioinformatica.bioinformatics.cadeia de Markov oculta generalizadageneralized hidden Markov modelsmodelos probabilisticospredicao ab initio de genesprobabilistic modelsO desafio de encontrar corretamente genes eucarioticos codificadores de proteinas nas sequencias genomicas e um problema em aberto. Neste trabalho, implementamos uma plata- forma, com o objetivo de melhorar a forma com que preditores de genes sao implementados e avaliados. Tres novas ferramentas foram implementadas: ToPS (Toolkit of Probabilistic Models of Sequences) foi o primeiro arcabouco orientado a objetos que fornece ferramentas para implementacao, manipulacao, e combinacao de modelos probabilisticos para representar sequencias de simbolos; MYOP (Make Your Own Predictor) e um sistema que tem como objetivo facilitar a construcao de preditores de genes; e SGEval utiliza grafos de splicing para comparar diferente anotacoes com eventos de splicing alternativos. Utilizamos nossas ferramentas para o desenvolvimentos de preditores de genes em onze genomas distintos: A. thaliana, C. elegans, Z. mays, P. falciparum, D. melanogaster, D. rerio, M. musculus, R. norvegicus, O. sativa, G. max e H. sapiens. Com esse desenvolvimento, estabelecemos um protocolo para implementacao de novos preditores. Alem disso, utilizando a nossa plata- forma, desenvolvemos um fluxo de trabalho para predicao de genes no projeto do genoma da cana de acucar, que ja foi utilizado em 109 sequencias de BAC geradas pelo BIOEN (FAPESP Bioenergy Program).The challenge of correctly identify eukaryotic protein-coding genes in the genomic se- quences is an open problem. In this work, we implemented a plataform with the aim of improving the way that gene predictors are implemented and evaluated. ToPS (Toolkit of Probabilistic Models of Sequence) was the first object-oriented framework that provides tools for implementation, manipulation, and combination of probabilistic models that represent sequences of symbols. MYOP (Make Your Own Predictor) facilitates the construction of gene predictors. SGEval (Splicing Graph Evaluation) uses splicing graphs to compare dif- ferent annotations with alternative splicing events. We used our plataform to develop gene finders in eleven distinct genomes: A. thaliana, C. elegans, Z. mays, P. falciparum, D. me- lanogaster, D. rerio, M. musculus, R. norvegicus, O. sativa, G. max e H. sapiens. With this development, we established a protocol for implementing new gene predictors. In addi- tion, using our platform, we developed a pipeline to find genes in the 109 sugarcane BAC sequences produced by BIOEN (FAPESP Bioenergy Program).Biblioteca Digitais de Teses e Dissertações da USPDurham, Alan MitchellKashiwabara, André Yoshiaki2012-02-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-02042012-184145/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-02T06:00:02Zoai:teses.usp.br:tde-02042012-184145Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-02T06:00:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genes
MYOP/ToPS/SGEval: A computational framework for gene prediction
title MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genes
spellingShingle MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genes
Kashiwabara, André Yoshiaki
ab initio gene prediction
Bioinformatica.
bioinformatics.
cadeia de Markov oculta generalizada
generalized hidden Markov models
modelos probabilisticos
predicao ab initio de genes
probabilistic models
title_short MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genes
title_full MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genes
title_fullStr MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genes
title_full_unstemmed MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genes
title_sort MYOP/ToPS/SGEval: Um ambiente computacional para estudo sistemático de predição de genes
author Kashiwabara, André Yoshiaki
author_facet Kashiwabara, André Yoshiaki
author_role author
dc.contributor.none.fl_str_mv Durham, Alan Mitchell
dc.contributor.author.fl_str_mv Kashiwabara, André Yoshiaki
dc.subject.por.fl_str_mv ab initio gene prediction
Bioinformatica.
bioinformatics.
cadeia de Markov oculta generalizada
generalized hidden Markov models
modelos probabilisticos
predicao ab initio de genes
probabilistic models
topic ab initio gene prediction
Bioinformatica.
bioinformatics.
cadeia de Markov oculta generalizada
generalized hidden Markov models
modelos probabilisticos
predicao ab initio de genes
probabilistic models
description O desafio de encontrar corretamente genes eucarioticos codificadores de proteinas nas sequencias genomicas e um problema em aberto. Neste trabalho, implementamos uma plata- forma, com o objetivo de melhorar a forma com que preditores de genes sao implementados e avaliados. Tres novas ferramentas foram implementadas: ToPS (Toolkit of Probabilistic Models of Sequences) foi o primeiro arcabouco orientado a objetos que fornece ferramentas para implementacao, manipulacao, e combinacao de modelos probabilisticos para representar sequencias de simbolos; MYOP (Make Your Own Predictor) e um sistema que tem como objetivo facilitar a construcao de preditores de genes; e SGEval utiliza grafos de splicing para comparar diferente anotacoes com eventos de splicing alternativos. Utilizamos nossas ferramentas para o desenvolvimentos de preditores de genes em onze genomas distintos: A. thaliana, C. elegans, Z. mays, P. falciparum, D. melanogaster, D. rerio, M. musculus, R. norvegicus, O. sativa, G. max e H. sapiens. Com esse desenvolvimento, estabelecemos um protocolo para implementacao de novos preditores. Alem disso, utilizando a nossa plata- forma, desenvolvemos um fluxo de trabalho para predicao de genes no projeto do genoma da cana de acucar, que ja foi utilizado em 109 sequencias de BAC geradas pelo BIOEN (FAPESP Bioenergy Program).
publishDate 2012
dc.date.none.fl_str_mv 2012-02-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-02042012-184145/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-02042012-184145/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257805155729408