Black Hole Weather Forecasting Using Deep Learning
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/14/14131/tde-23102020-170517/ |
Resumo: | Traditional methods of studying accretion flows onto black holes mainly consist of computationally expensive numerical simulations. This often imposes severe limitations to the dimensionality, simulation times, and resolution. Computational astrophysics is inurgent need of new tools to accelerate the calculations, thereby leading to faster results. We propose a deep learning method to make black hole weather forecasting: a data-driven approach for solving the chaotic dynamics of BH accretion flows. Our model can reproduce the results of a hydrodynamic simulation with an error <3% and at the sametime speeding-up the calculations by a factor of 1e4.5, thus reducing the simulation time |
| id |
USP_fe26113a47926dbeff45fe3a516210ed |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-23102020-170517 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Black Hole Weather Forecasting Using Deep LearningPredição de estados de buracos negros usando aprendizado profundoaprendizado profundoastrofísicaastrophysicsblack holesburacos negrosdeep learningTraditional methods of studying accretion flows onto black holes mainly consist of computationally expensive numerical simulations. This often imposes severe limitations to the dimensionality, simulation times, and resolution. Computational astrophysics is inurgent need of new tools to accelerate the calculations, thereby leading to faster results. We propose a deep learning method to make black hole weather forecasting: a data-driven approach for solving the chaotic dynamics of BH accretion flows. Our model can reproduce the results of a hydrodynamic simulation with an error <3% and at the sametime speeding-up the calculations by a factor of 1e4.5, thus reducing the simulation timeMétodos tradicionais de estudar o comportamento de um disco de acreçãoo ao redor de um buraco negro são compostos principalmente de simulaçõees numéricas computacionalmente caras. Esse custo faz com que as simulações numéricas sejam restringidas por dimensionalidade ou limitações nas equações e, geralmente, leva muito tempo para simular. A física de buracos negros precisa urgentemente de uma nova ferramenta capaz de obter resultados mais rápidos. Queremos propor o uso do aprendizado profundo como uma possível nova ferramenta. O objetivo é desenvolver um método de aprendizado profundocapaz de fazer previsões de estados ao redor de buracos negros. Propomos um modelo que pode reproduzir os resultados de uma simulação com um erro abaixo d e<3% e ao mesmo tempo acelerar o processo de obtenção dos resultados por um fator de 1e4.5Biblioteca Digitais de Teses e Dissertações da USPSilva, Rodrigo Nemmen daPereira, Roberta Duarte2020-09-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/14/14131/tde-23102020-170517/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-11-07T02:06:21Zoai:teses.usp.br:tde-23102020-170517Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-11-07T02:06:21Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Black Hole Weather Forecasting Using Deep Learning Predição de estados de buracos negros usando aprendizado profundo |
| title |
Black Hole Weather Forecasting Using Deep Learning |
| spellingShingle |
Black Hole Weather Forecasting Using Deep Learning Pereira, Roberta Duarte aprendizado profundo astrofísica astrophysics black holes buracos negros deep learning |
| title_short |
Black Hole Weather Forecasting Using Deep Learning |
| title_full |
Black Hole Weather Forecasting Using Deep Learning |
| title_fullStr |
Black Hole Weather Forecasting Using Deep Learning |
| title_full_unstemmed |
Black Hole Weather Forecasting Using Deep Learning |
| title_sort |
Black Hole Weather Forecasting Using Deep Learning |
| author |
Pereira, Roberta Duarte |
| author_facet |
Pereira, Roberta Duarte |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Silva, Rodrigo Nemmen da |
| dc.contributor.author.fl_str_mv |
Pereira, Roberta Duarte |
| dc.subject.por.fl_str_mv |
aprendizado profundo astrofísica astrophysics black holes buracos negros deep learning |
| topic |
aprendizado profundo astrofísica astrophysics black holes buracos negros deep learning |
| description |
Traditional methods of studying accretion flows onto black holes mainly consist of computationally expensive numerical simulations. This often imposes severe limitations to the dimensionality, simulation times, and resolution. Computational astrophysics is inurgent need of new tools to accelerate the calculations, thereby leading to faster results. We propose a deep learning method to make black hole weather forecasting: a data-driven approach for solving the chaotic dynamics of BH accretion flows. Our model can reproduce the results of a hydrodynamic simulation with an error <3% and at the sametime speeding-up the calculations by a factor of 1e4.5, thus reducing the simulation time |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-09-08 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/14/14131/tde-23102020-170517/ |
| url |
https://www.teses.usp.br/teses/disponiveis/14/14131/tde-23102020-170517/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258479090204672 |