Construções consistentes de espaços de Banach C (K) com poucos operadores
| Ano de defesa: | 2007 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20032008-224137/ |
Resumo: | Neste trabalho aplicamos técnicas de combinatória infinitária e forcing na teoria dos espaços de Banach, investigando propriedades dos espaços de Banach da forma C(K), formado pelas funções reais contínuas sobre K com a norma do supremo, com poucos operadores, no sentido de que todo operador em C(K) é da forma gI+S, onde I é o operador identidade, g pertence a C(K) e S é fracamente compacto. Enfatizamos as construções onde K é conexo, o que implica que C(K) é indecomponível. Assumindo Axioma Diamante, um axioma combinatório mais forte que a Hipótese do Contínuo, construímos um espaço de Banach C(K) tal que C(L) tem poucos operadores, para todo L subespaço fechado de K. Sob a Hipótese do Contínuo construímos um espaço C(K) indecomponível com poucos operadores tal que K contém $\\beta N$ homeomorficamente. Em ZFC construímos um espaço C(K) com poucos operadores em um sentido estritamente mais fraco. Também mostramos a existência de pelo menos contínuo espaços de Banach C(K) indecomponíveis dois a dois essencialmente incomparáveis. Usando forcing provamos que existe consistentemente um espaço de Banach C(K) de densidade menor que contínuo com poucos operadores e um C(K) indecomponível de densidade menor que contínuo. |
| id |
USP_ff303be9c9f4e4699a34fe2291ce98c3 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-20032008-224137 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Construções consistentes de espaços de Banach C (K) com poucos operadoresConsistent constructions of Banach spaces C(K) with few operatorsBanach spacesespaços de Banachespaços indecomponíveisforcingforcingindecomposable Banach spacesoperadoresoperatorsNeste trabalho aplicamos técnicas de combinatória infinitária e forcing na teoria dos espaços de Banach, investigando propriedades dos espaços de Banach da forma C(K), formado pelas funções reais contínuas sobre K com a norma do supremo, com poucos operadores, no sentido de que todo operador em C(K) é da forma gI+S, onde I é o operador identidade, g pertence a C(K) e S é fracamente compacto. Enfatizamos as construções onde K é conexo, o que implica que C(K) é indecomponível. Assumindo Axioma Diamante, um axioma combinatório mais forte que a Hipótese do Contínuo, construímos um espaço de Banach C(K) tal que C(L) tem poucos operadores, para todo L subespaço fechado de K. Sob a Hipótese do Contínuo construímos um espaço C(K) indecomponível com poucos operadores tal que K contém $\\beta N$ homeomorficamente. Em ZFC construímos um espaço C(K) com poucos operadores em um sentido estritamente mais fraco. Também mostramos a existência de pelo menos contínuo espaços de Banach C(K) indecomponíveis dois a dois essencialmente incomparáveis. Usando forcing provamos que existe consistentemente um espaço de Banach C(K) de densidade menor que contínuo com poucos operadores e um C(K) indecomponível de densidade menor que contínuo.In this work we apply techniques of infinitary combinatorics and forcing in Banach spaces theory, investigating the compact topological spaces K such that the Banach space C(K), consisting of the continuous real-valued functions on K with the supremum norm, has few operators, in the sense that all operators on C(K) have the form gI+S, where I is the identity operator, g\\ belongs to C(K) and S is weakly compact. We emphasize the constructions where K is connected, which implies that C(K) is indecomposable. Assuming Diamond Axiom, a combinatoric axiom stronger than the continuum hypothesis, we construct a Banach space C(K) where C(L) has few operators, for every L closed subspace of K. Under continuum hypothesis we construct an indecomposable C(K) with few operators such that K contains $\\beta \\mathbb$ homeomorphically. In ZFC we construct a space C(K) with few operators in a strictly weaker sense. We also show the existence of at least continuum pairwise essentially incomparable indecomposable Banach spaces C(K). Using forcing, we prove that there exists consistently a Banach space C(K) of density smaller than continuum having few operators and an indecomposable C(K) of density smaller than continuum.Biblioteca Digitais de Teses e Dissertações da USPGalego, Eloi MedinaKoszmider, Piotr BoleslawFajardo, Rogerio Augusto dos Santos2007-10-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-20032008-224137/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:55Zoai:teses.usp.br:tde-20032008-224137Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Construções consistentes de espaços de Banach C (K) com poucos operadores Consistent constructions of Banach spaces C(K) with few operators |
| title |
Construções consistentes de espaços de Banach C (K) com poucos operadores |
| spellingShingle |
Construções consistentes de espaços de Banach C (K) com poucos operadores Fajardo, Rogerio Augusto dos Santos Banach spaces espaços de Banach espaços indecomponíveis forcing forcing indecomposable Banach spaces operadores operators |
| title_short |
Construções consistentes de espaços de Banach C (K) com poucos operadores |
| title_full |
Construções consistentes de espaços de Banach C (K) com poucos operadores |
| title_fullStr |
Construções consistentes de espaços de Banach C (K) com poucos operadores |
| title_full_unstemmed |
Construções consistentes de espaços de Banach C (K) com poucos operadores |
| title_sort |
Construções consistentes de espaços de Banach C (K) com poucos operadores |
| author |
Fajardo, Rogerio Augusto dos Santos |
| author_facet |
Fajardo, Rogerio Augusto dos Santos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Galego, Eloi Medina Koszmider, Piotr Boleslaw |
| dc.contributor.author.fl_str_mv |
Fajardo, Rogerio Augusto dos Santos |
| dc.subject.por.fl_str_mv |
Banach spaces espaços de Banach espaços indecomponíveis forcing forcing indecomposable Banach spaces operadores operators |
| topic |
Banach spaces espaços de Banach espaços indecomponíveis forcing forcing indecomposable Banach spaces operadores operators |
| description |
Neste trabalho aplicamos técnicas de combinatória infinitária e forcing na teoria dos espaços de Banach, investigando propriedades dos espaços de Banach da forma C(K), formado pelas funções reais contínuas sobre K com a norma do supremo, com poucos operadores, no sentido de que todo operador em C(K) é da forma gI+S, onde I é o operador identidade, g pertence a C(K) e S é fracamente compacto. Enfatizamos as construções onde K é conexo, o que implica que C(K) é indecomponível. Assumindo Axioma Diamante, um axioma combinatório mais forte que a Hipótese do Contínuo, construímos um espaço de Banach C(K) tal que C(L) tem poucos operadores, para todo L subespaço fechado de K. Sob a Hipótese do Contínuo construímos um espaço C(K) indecomponível com poucos operadores tal que K contém $\\beta N$ homeomorficamente. Em ZFC construímos um espaço C(K) com poucos operadores em um sentido estritamente mais fraco. Também mostramos a existência de pelo menos contínuo espaços de Banach C(K) indecomponíveis dois a dois essencialmente incomparáveis. Usando forcing provamos que existe consistentemente um espaço de Banach C(K) de densidade menor que contínuo com poucos operadores e um C(K) indecomponível de densidade menor que contínuo. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-10-24 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20032008-224137/ |
| url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20032008-224137/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258280229863424 |