Predicting BTC price trends with social media sentiment: leveraging transformers model
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | https://hdl.handle.net/10438/36647 |
Resumo: | This study explores the prediction of BTC (BTC) price movements using sentiment analysis from social media, combined with advanced machine learning techniques, with a particular focus on the innovative application of Transformers. In a highly volatile financial market sensitive to external influences, understanding the impact of investor sentiment is crucial for predicting price trends. This work employs sentiment data extracted from plat- forms such as Twitter and Reddit, processed through natural language processing (NLP) techniques to categorize sentiment as positive, negative, or neutral. The Transformer model is utilized to develop forecasts on the future direction of BTC prices. Known for its ability to capture complex temporal patterns and dependencies over long sequences, the Transformer enhances prediction accuracy by effectively modeling long-range dependencies in sequential data. The study implements a sensitivity analysis to assess the impact of different sentiment intensities on BTC prices, providing a deeper understanding of market dynamics influenced by sentiment events, such as large ”whale” transactions or significant news. The expected results include improved accuracy in predicting BTC price movements, offering valuable insights for traders and investors. This work contributes to the existing body of research on the use of sentiment analysis in financial markets, particularly in the context of cryptocurrencies, and underscores the potential of Transformers as powerful tools for forecasting market trends based on sentiment data. |
| id |
FGV_80bbcf746ed51d01f7e13beca3ec141d |
|---|---|
| oai_identifier_str |
oai:repositorio.fgv.br:10438/36647 |
| network_acronym_str |
FGV |
| network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| repository_id_str |
|
| spelling |
Hidalgo, Rodrigo Soares de AndradeEscolas::EESPSantana, LucasMendes, Eduardo FonsecaColombo, Jefferson Augusto2025-03-14T18:15:52Z2025-03-14T18:15:52Z2025-02-28https://hdl.handle.net/10438/36647This study explores the prediction of BTC (BTC) price movements using sentiment analysis from social media, combined with advanced machine learning techniques, with a particular focus on the innovative application of Transformers. In a highly volatile financial market sensitive to external influences, understanding the impact of investor sentiment is crucial for predicting price trends. This work employs sentiment data extracted from plat- forms such as Twitter and Reddit, processed through natural language processing (NLP) techniques to categorize sentiment as positive, negative, or neutral. The Transformer model is utilized to develop forecasts on the future direction of BTC prices. Known for its ability to capture complex temporal patterns and dependencies over long sequences, the Transformer enhances prediction accuracy by effectively modeling long-range dependencies in sequential data. The study implements a sensitivity analysis to assess the impact of different sentiment intensities on BTC prices, providing a deeper understanding of market dynamics influenced by sentiment events, such as large ”whale” transactions or significant news. The expected results include improved accuracy in predicting BTC price movements, offering valuable insights for traders and investors. This work contributes to the existing body of research on the use of sentiment analysis in financial markets, particularly in the context of cryptocurrencies, and underscores the potential of Transformers as powerful tools for forecasting market trends based on sentiment data.Este estudo explora a previsão dos movimentos de preço do Bitcoin (BTC) utilizando análise de sentimento proveniente das redes sociais, combinada com técnicas avançadas de aprendizado de máquina, com um foco particular na aplicação inovadora de Transformers. Em um mercado financeiro altamente volátil e sensível a influências externas, compreender o impacto do sentimento dos investidores é crucial para prever tendências de preços. Este trabalho emprega dados de sentimento extraídos de plataformas como Twitter e Reddit, processados por meio de técnicas de processamento de linguagem natural (NLP) para categorizar o sentimento como positivo, negativo ou neutro. O modelo Transformer é utilizado para desenvolver previsões sobre a direção futura dos preços do BTC. Conhecido por sua capacidade de capturar padrões temporais complexos e dependências em longas sequências, o Transformer aprimora a precisão da previsão ao modelar de forma eficaz dependências de longo alcance em dados sequenciais. O estudo implementa uma análise de sensibilidade para avaliar o impacto de diferentes intensidades de sentimento nos preços do BTC, proporcionando uma compreensão mais profunda da dinâmica do mercado influenciada por eventos de sentimento, como grandes transações de “baleias” ou notícias significativas. Os resultados esperados incluem uma maior precisão na previsão dos movimentos de preço do BTC, oferecendo insights valiosos para traders e investidores. Este trabalho contribui para o corpo de pesquisa existente sobre o uso da análise de sentimento nos mercados financeiros, particularmente no contexto das criptomoedas, e destaca o potencial dos Transformers como ferramentas poderosas para prever tendências de mercado com base em dados de sentimento.engBitcoinTransformersMachine learningAprendizado de máquinaEconomiaBitcoinVolatilidade (Finanças)PreçosInvestimentos - Processo decisórioAprendizado do computadorPredicting BTC price trends with social media sentiment: leveraging transformers modelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALRodrigo Hidalgo MPE2025.pdfRodrigo Hidalgo MPE2025.pdfPDFapplication/pdf452174https://repositorio.fgv.br/bitstreams/42027161-8d01-494b-96db-20e7225e56c7/downloade32c980ed7fa50e1720628d84fffaab1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-85112https://repositorio.fgv.br/bitstreams/31532843-f84f-4df9-a294-689a3b5b442a/download2a4b67231f701c416a809246e7a10077MD52TEXTRodrigo Hidalgo MPE2025.pdf.txtRodrigo Hidalgo MPE2025.pdf.txtExtracted texttext/plain100808https://repositorio.fgv.br/bitstreams/7f19f7ac-08fe-4b6e-b426-8c032574b0d2/downloadd26c567e40de61eb8b8178b74b8ba74cMD53THUMBNAILRodrigo Hidalgo MPE2025.pdf.jpgRodrigo Hidalgo MPE2025.pdf.jpgGenerated Thumbnailimage/jpeg2638https://repositorio.fgv.br/bitstreams/28816ee1-d7a2-4a78-a948-3b3d65a8bded/download518467214b281c3847a617577aa2af3dMD5410438/366472025-03-15 15:01:46.131open.accessoai:repositorio.fgv.br:10438/36647https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742025-03-15T15:01:46Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVGVybW8gZGUgTGljZW5jaWFtZW50bwpIw6EgdW0gw7psdGltbyBwYXNzbzogcGFyYSByZXByb2R1emlyLCB0cmFkdXppciBlIGRpc3RyaWJ1aXIgc3VhIHN1Ym1pc3PDo28gZW0gdG9kbyBvIG11bmRvLCB2b2PDqiBkZXZlIGNvbmNvcmRhciBjb20gb3MgdGVybW9zIGEgc2VndWlyLgoKQ29uY29yZGFyIGNvbSBvIFRlcm1vIGRlIExpY2VuY2lhbWVudG8sIHNlbGVjaW9uYW5kbyAiRXUgY29uY29yZG8gY29tIG8gVGVybW8gZGUgTGljZW5jaWFtZW50byIgZSBjbGlxdWUgZW0gIkZpbmFsaXphciBzdWJtaXNzw6NvIi4KClRFUk1PUyBMSUNFTkNJQU1FTlRPIFBBUkEgQVJRVUlWQU1FTlRPLCBSRVBST0RVw4fDg08gRSBESVZVTEdBw4fDg08gUMOaQkxJQ0EgREUgQ09OVEXDmkRPIMOAIEJJQkxJT1RFQ0EgVklSVFVBTCBGR1YgKHZlcnPDo28gMS4yKQoKMS4gVm9jw6osIHVzdcOhcmlvLWRlcG9zaXRhbnRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YsIGFzc2VndXJhLCBubyBwcmVzZW50ZSBhdG8sIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBkaXJlaXRvcyBjb25leG9zIHJlZmVyZW50ZXMgw6AgdG90YWxpZGFkZSBkYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVtIGZvcm1hdG8gZGlnaXRhbCwgYmVtIGNvbW8gZGUgc2V1cyBjb21wb25lbnRlcyBtZW5vcmVzLCBlbSBzZSB0cmF0YW5kbyBkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpIDkuNjA5Lzk4LiBOw6NvIHNlbmRvIGVzdGUgbyBjYXNvLCB2b2PDqiBhc3NlZ3VyYSB0ZXIgb2J0aWRvLCBkaXJldGFtZW50ZSBkb3MgZGV2aWRvcyB0aXR1bGFyZXMsIGF1dG9yaXphw6fDo28gcHLDqXZpYSBlIGV4cHJlc3NhIHBhcmEgbyBkZXDDs3NpdG8gZSBkaXZ1bGdhw6fDo28gZGEgT2JyYSwgYWJyYW5nZW5kbyB0b2RvcyBvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmV4b3MgYWZldGFkb3MgcGVsYSBhc3NpbmF0dXJhIGRvcyBwcmVzZW50ZXMgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8sIGRlIG1vZG8gYSBlZmV0aXZhbWVudGUgaXNlbnRhciBhIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMgZSBzZXVzIGZ1bmNpb27DoXJpb3MgZGUgcXVhbHF1ZXIgcmVzcG9uc2FiaWxpZGFkZSBwZWxvIHVzbyBuw6NvLWF1dG9yaXphZG8gZG8gbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgc2VqYSBlbSB2aW5jdWxhw6fDo28gYSBxdWFpc3F1ZXIgc2VydmnDp29zIGRlIGJ1c2NhIGUgZGlzdHJpYnVpw6fDo28gZGUgY29udGXDumRvIHF1ZSBmYcOnYW0gdXNvIGRhcyBpbnRlcmZhY2VzIGUgZXNwYcOnbyBkZSBhcm1hemVuYW1lbnRvIHByb3ZpZGVuY2lhZG9zIHBlbGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBwb3IgbWVpbyBkZSBzZXVzIHNpc3RlbWFzIGluZm9ybWF0aXphZG9zLgoKMi4gQSBhc3NpbmF0dXJhIGRlc3RhIGxpY2Vuw6dhIHRlbSBjb21vIGNvbnNlccO8w6puY2lhIGEgdHJhbnNmZXLDqm5jaWEsIGEgdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMgb3UgcXVhbHF1ZXIgb3V0cmEgY29udHJhcHJlc3Rhw6fDo28sIHBlY3VuacOhcmlhIG91IG7Do28sIMOgIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMsIGRvcyBkaXJlaXRvcyBkZSBhcm1hemVuYXIgZGlnaXRhbG1lbnRlLCByZXByb2R1emlyIGUgZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldSByZXN1bW8vYWJzdHJhY3QsIHBvciBtZWlvcyBlbGV0csO0bmljb3MsIG5vIHNpdGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYW8gcMO6YmxpY28gZW0gZ2VyYWwsIGVtIHJlZ2ltZSBkZSBhY2Vzc28gYWJlcnRvLgoKMy4gQSBwcmVzZW50ZSBsaWNlbsOnYSB0YW1iw6ltIGFicmFuZ2UsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgcXVhbHF1ZXIgZGlyZWl0byBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIGNhYsOtdmVsIGVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgIHJlcHJlc2VudGHDp8OjbyBww7pibGljYSBlL291IGV4ZWN1w6fDo28gcMO6YmxpY2EsIGJlbSBjb21vIHF1YWxxdWVyIG91dHJhIG1vZGFsaWRhZGUgZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBxdWUgZXhpc3RhIG91IHZlbmhhIGEgZXhpc3Rpciwgbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlIGZvciBhcGxpY8OhdmVsIGFvcyBzZXJ2acOnb3MgcHJlc3RhZG9zIGFvIHDDumJsaWNvIHBlbGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjQuIEVzdGEgbGljZW7Dp2EgYWJyYW5nZSwgYWluZGEsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgdG9kb3Mgb3MgZGlyZWl0b3MgY29uZXhvcyBkZSBhcnRpc3RhcyBpbnTDqXJwcmV0ZXMgb3UgZXhlY3V0YW50ZXMsIHByb2R1dG9yZXMgZm9ub2dyw6FmaWNvcyBvdSBlbXByZXNhcyBkZSByYWRpb2RpZnVzw6NvIHF1ZSBldmVudHVhbG1lbnRlIHNlamFtIGFwbGljw6F2ZWlzIGVtIHJlbGHDp8OjbyDDoCBvYnJhIGRlcG9zaXRhZGEsIGVtIGNvbmZvcm1pZGFkZSBjb20gbyByZWdpbWUgZml4YWRvIG5vIFTDrXR1bG8gViBkYSBMZWkgOS42MTAvOTguCgo1LiBTZSBhIE9icmEgZGVwb3NpdGFkYSBmb2kgb3Ugw6kgb2JqZXRvIGRlIGZpbmFuY2lhbWVudG8gcG9yIGluc3RpdHVpw6fDtWVzIGRlIGZvbWVudG8gw6AgcGVzcXVpc2Egb3UgcXVhbHF1ZXIgb3V0cmEgc2VtZWxoYW50ZSwgdm9jw6ogb3UgbyB0aXR1bGFyIGFzc2VndXJhIHF1ZSBjdW1wcml1IHRvZGFzIGFzIG9icmlnYcOnw7VlcyBxdWUgbGhlIGZvcmFtIGltcG9zdGFzIHBlbGEgaW5zdGl0dWnDp8OjbyBmaW5hbmNpYWRvcmEgZW0gcmF6w6NvIGRvIGZpbmFuY2lhbWVudG8sIGUgcXVlIG7Do28gZXN0w6EgY29udHJhcmlhbmRvIHF1YWxxdWVyIGRpc3Bvc2nDp8OjbyBjb250cmF0dWFsIHJlZmVyZW50ZSDDoCBwdWJsaWNhw6fDo28gZG8gY29udGXDumRvIG9yYSBzdWJtZXRpZG8gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjYuIENhc28gYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVuY29udHJlLXNlIGxpY2VuY2lhZGEgc29iIHVtYSBsaWNlbsOnYSBDcmVhdGl2ZSBDb21tb25zIChxdWFscXVlciB2ZXJzw6NvKSwgc29iIGEgbGljZW7Dp2EgR05VIEZyZWUgRG9jdW1lbnRhdGlvbiBMaWNlbnNlIChxdWFscXVlciB2ZXJzw6NvKSwgb3Ugb3V0cmEgbGljZW7Dp2EgcXVhbGlmaWNhZGEgY29tbyBsaXZyZSBzZWd1bmRvIG9zIGNyaXTDqXJpb3MgZGEgRGVmaW5pdGlvbiBvZiBGcmVlIEN1bHR1cmFsIFdvcmtzIChkaXNwb27DrXZlbCBlbTogaHR0cDovL2ZyZWVkb21kZWZpbmVkLm9yZy9EZWZpbml0aW9uKSBvdSBGcmVlIFNvZnR3YXJlIERlZmluaXRpb24gKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vd3d3LmdudS5vcmcvcGhpbG9zb3BoeS9mcmVlLXN3Lmh0bWwpLCBvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbSBjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcyBsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIgYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEgaW50ZWdyYWwuCgpBbyBjb25jbHVpciBhIHByZXNlbnRlIGV0YXBhIGUgYXMgZXRhcGFzIHN1YnNlccO8ZW50ZXMgZG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlIGNvbmNvcmRhIGludGVncmFsbWVudGUgY29tIG9zIHRlcm1vcyBhY2ltYSBkZWxpbWl0YWRvcywgYXNzaW5hbmRvLW9zIHNlbSBmYXplciBxdWFscXVlciByZXNlcnZhIGUgbm92YW1lbnRlIGNvbmZpcm1hbmRvIHF1ZSBjdW1wcmUgb3MgcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4KCkhhdmVuZG8gcXVhbHF1ZXIgZGlzY29yZMOibmNpYSBlbSByZWxhw6fDo28gYW9zIHByZXNlbnRlcyB0ZXJtb3Mgb3UgbsOjbyBzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlciBpbWVkaWF0YW1lbnRlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8Ojby4gQSBjb250aW51aWRhZGUgZG8gcHJvY2Vzc28gZXF1aXZhbGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXHDvMOqbmNpYXMgbmVsZSBwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvIG7Do28gc2VqYSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBjb25leG9zIGFwbGljw6F2ZWlzIMOgIE9icmEgZGVwb3NpdGFkYSBkdXJhbnRlIGVzdGUgcHJvY2Vzc28sIG91IGNhc28gbsOjbyB0ZW5oYSBvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUgdG9kb3Mgb3MgdXNvcyBkYSBPYnJhIGVudm9sdmlkb3MuCgpQYXJhIGEgc29sdcOnw6NvIGRlIHF1YWxxdWVyIGTDunZpZGEgcXVhbnRvIGFvcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50byBlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbywgY2xpcXVlIG5vIGxpbmsgIkZhbGUgY29ub3NjbyIuCgpTZSB2b2PDqiB0aXZlciBkw7p2aWRhcyBzb2JyZSBlc3RhIGxpY2Vuw6dhLCBwb3IgZmF2b3IgZW50cmUgZW0gY29udGF0byBjb20gb3MgYWRtaW5pc3RyYWRvcmVzIGRvIFJlcG9zaXTDs3Jpby4K |
| dc.title.eng.fl_str_mv |
Predicting BTC price trends with social media sentiment: leveraging transformers model |
| title |
Predicting BTC price trends with social media sentiment: leveraging transformers model |
| spellingShingle |
Predicting BTC price trends with social media sentiment: leveraging transformers model Hidalgo, Rodrigo Soares de Andrade Bitcoin Transformers Machine learning Aprendizado de máquina Economia Bitcoin Volatilidade (Finanças) Preços Investimentos - Processo decisório Aprendizado do computador |
| title_short |
Predicting BTC price trends with social media sentiment: leveraging transformers model |
| title_full |
Predicting BTC price trends with social media sentiment: leveraging transformers model |
| title_fullStr |
Predicting BTC price trends with social media sentiment: leveraging transformers model |
| title_full_unstemmed |
Predicting BTC price trends with social media sentiment: leveraging transformers model |
| title_sort |
Predicting BTC price trends with social media sentiment: leveraging transformers model |
| author |
Hidalgo, Rodrigo Soares de Andrade |
| author_facet |
Hidalgo, Rodrigo Soares de Andrade |
| author_role |
author |
| dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
| dc.contributor.member.none.fl_str_mv |
Santana, Lucas Mendes, Eduardo Fonseca |
| dc.contributor.author.fl_str_mv |
Hidalgo, Rodrigo Soares de Andrade |
| dc.contributor.advisor1.fl_str_mv |
Colombo, Jefferson Augusto |
| contributor_str_mv |
Colombo, Jefferson Augusto |
| dc.subject.eng.fl_str_mv |
Bitcoin Transformers Machine learning |
| topic |
Bitcoin Transformers Machine learning Aprendizado de máquina Economia Bitcoin Volatilidade (Finanças) Preços Investimentos - Processo decisório Aprendizado do computador |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina |
| dc.subject.area.por.fl_str_mv |
Economia |
| dc.subject.bibliodata.por.fl_str_mv |
Bitcoin Volatilidade (Finanças) Preços Investimentos - Processo decisório Aprendizado do computador |
| description |
This study explores the prediction of BTC (BTC) price movements using sentiment analysis from social media, combined with advanced machine learning techniques, with a particular focus on the innovative application of Transformers. In a highly volatile financial market sensitive to external influences, understanding the impact of investor sentiment is crucial for predicting price trends. This work employs sentiment data extracted from plat- forms such as Twitter and Reddit, processed through natural language processing (NLP) techniques to categorize sentiment as positive, negative, or neutral. The Transformer model is utilized to develop forecasts on the future direction of BTC prices. Known for its ability to capture complex temporal patterns and dependencies over long sequences, the Transformer enhances prediction accuracy by effectively modeling long-range dependencies in sequential data. The study implements a sensitivity analysis to assess the impact of different sentiment intensities on BTC prices, providing a deeper understanding of market dynamics influenced by sentiment events, such as large ”whale” transactions or significant news. The expected results include improved accuracy in predicting BTC price movements, offering valuable insights for traders and investors. This work contributes to the existing body of research on the use of sentiment analysis in financial markets, particularly in the context of cryptocurrencies, and underscores the potential of Transformers as powerful tools for forecasting market trends based on sentiment data. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-03-14T18:15:52Z |
| dc.date.available.fl_str_mv |
2025-03-14T18:15:52Z |
| dc.date.issued.fl_str_mv |
2025-02-28 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/36647 |
| url |
https://hdl.handle.net/10438/36647 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
| instname_str |
Fundação Getulio Vargas (FGV) |
| instacron_str |
FGV |
| institution |
FGV |
| reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
| bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/42027161-8d01-494b-96db-20e7225e56c7/download https://repositorio.fgv.br/bitstreams/31532843-f84f-4df9-a294-689a3b5b442a/download https://repositorio.fgv.br/bitstreams/7f19f7ac-08fe-4b6e-b426-8c032574b0d2/download https://repositorio.fgv.br/bitstreams/28816ee1-d7a2-4a78-a948-3b3d65a8bded/download |
| bitstream.checksum.fl_str_mv |
e32c980ed7fa50e1720628d84fffaab1 2a4b67231f701c416a809246e7a10077 d26c567e40de61eb8b8178b74b8ba74c 518467214b281c3847a617577aa2af3d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
| repository.mail.fl_str_mv |
|
| _version_ |
1827842384177659904 |