Predicting BTC price trends with social media sentiment: leveraging transformers model

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Hidalgo, Rodrigo Soares de Andrade
Orientador(a): Colombo, Jefferson Augusto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://hdl.handle.net/10438/36647
Resumo: This study explores the prediction of BTC (BTC) price movements using sentiment analysis from social media, combined with advanced machine learning techniques, with a particular focus on the innovative application of Transformers. In a highly volatile financial market sensitive to external influences, understanding the impact of investor sentiment is crucial for predicting price trends. This work employs sentiment data extracted from plat- forms such as Twitter and Reddit, processed through natural language processing (NLP) techniques to categorize sentiment as positive, negative, or neutral. The Transformer model is utilized to develop forecasts on the future direction of BTC prices. Known for its ability to capture complex temporal patterns and dependencies over long sequences, the Transformer enhances prediction accuracy by effectively modeling long-range dependencies in sequential data. The study implements a sensitivity analysis to assess the impact of different sentiment intensities on BTC prices, providing a deeper understanding of market dynamics influenced by sentiment events, such as large ”whale” transactions or significant news. The expected results include improved accuracy in predicting BTC price movements, offering valuable insights for traders and investors. This work contributes to the existing body of research on the use of sentiment analysis in financial markets, particularly in the context of cryptocurrencies, and underscores the potential of Transformers as powerful tools for forecasting market trends based on sentiment data.
id FGV_80bbcf746ed51d01f7e13beca3ec141d
oai_identifier_str oai:repositorio.fgv.br:10438/36647
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str
spelling Hidalgo, Rodrigo Soares de AndradeEscolas::EESPSantana, LucasMendes, Eduardo FonsecaColombo, Jefferson Augusto2025-03-14T18:15:52Z2025-03-14T18:15:52Z2025-02-28https://hdl.handle.net/10438/36647This study explores the prediction of BTC (BTC) price movements using sentiment analysis from social media, combined with advanced machine learning techniques, with a particular focus on the innovative application of Transformers. In a highly volatile financial market sensitive to external influences, understanding the impact of investor sentiment is crucial for predicting price trends. This work employs sentiment data extracted from plat- forms such as Twitter and Reddit, processed through natural language processing (NLP) techniques to categorize sentiment as positive, negative, or neutral. The Transformer model is utilized to develop forecasts on the future direction of BTC prices. Known for its ability to capture complex temporal patterns and dependencies over long sequences, the Transformer enhances prediction accuracy by effectively modeling long-range dependencies in sequential data. The study implements a sensitivity analysis to assess the impact of different sentiment intensities on BTC prices, providing a deeper understanding of market dynamics influenced by sentiment events, such as large ”whale” transactions or significant news. The expected results include improved accuracy in predicting BTC price movements, offering valuable insights for traders and investors. This work contributes to the existing body of research on the use of sentiment analysis in financial markets, particularly in the context of cryptocurrencies, and underscores the potential of Transformers as powerful tools for forecasting market trends based on sentiment data.Este estudo explora a previsão dos movimentos de preço do Bitcoin (BTC) utilizando análise de sentimento proveniente das redes sociais, combinada com técnicas avançadas de aprendizado de máquina, com um foco particular na aplicação inovadora de Transformers. Em um mercado financeiro altamente volátil e sensível a influências externas, compreender o impacto do sentimento dos investidores é crucial para prever tendências de preços. Este trabalho emprega dados de sentimento extraídos de plataformas como Twitter e Reddit, processados por meio de técnicas de processamento de linguagem natural (NLP) para categorizar o sentimento como positivo, negativo ou neutro. O modelo Transformer é utilizado para desenvolver previsões sobre a direção futura dos preços do BTC. Conhecido por sua capacidade de capturar padrões temporais complexos e dependências em longas sequências, o Transformer aprimora a precisão da previsão ao modelar de forma eficaz dependências de longo alcance em dados sequenciais. O estudo implementa uma análise de sensibilidade para avaliar o impacto de diferentes intensidades de sentimento nos preços do BTC, proporcionando uma compreensão mais profunda da dinâmica do mercado influenciada por eventos de sentimento, como grandes transações de “baleias” ou notícias significativas. Os resultados esperados incluem uma maior precisão na previsão dos movimentos de preço do BTC, oferecendo insights valiosos para traders e investidores. Este trabalho contribui para o corpo de pesquisa existente sobre o uso da análise de sentimento nos mercados financeiros, particularmente no contexto das criptomoedas, e destaca o potencial dos Transformers como ferramentas poderosas para prever tendências de mercado com base em dados de sentimento.engBitcoinTransformersMachine learningAprendizado de máquinaEconomiaBitcoinVolatilidade (Finanças)PreçosInvestimentos - Processo decisórioAprendizado do computadorPredicting BTC price trends with social media sentiment: leveraging transformers modelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALRodrigo Hidalgo MPE2025.pdfRodrigo Hidalgo MPE2025.pdfPDFapplication/pdf452174https://repositorio.fgv.br/bitstreams/42027161-8d01-494b-96db-20e7225e56c7/downloade32c980ed7fa50e1720628d84fffaab1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-85112https://repositorio.fgv.br/bitstreams/31532843-f84f-4df9-a294-689a3b5b442a/download2a4b67231f701c416a809246e7a10077MD52TEXTRodrigo Hidalgo MPE2025.pdf.txtRodrigo Hidalgo MPE2025.pdf.txtExtracted texttext/plain100808https://repositorio.fgv.br/bitstreams/7f19f7ac-08fe-4b6e-b426-8c032574b0d2/downloadd26c567e40de61eb8b8178b74b8ba74cMD53THUMBNAILRodrigo Hidalgo MPE2025.pdf.jpgRodrigo Hidalgo MPE2025.pdf.jpgGenerated Thumbnailimage/jpeg2638https://repositorio.fgv.br/bitstreams/28816ee1-d7a2-4a78-a948-3b3d65a8bded/download518467214b281c3847a617577aa2af3dMD5410438/366472025-03-15 15:01:46.131open.accessoai:repositorio.fgv.br:10438/36647https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742025-03-15T15:01:46Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVGVybW8gZGUgTGljZW5jaWFtZW50bwpIw6EgdW0gw7psdGltbyBwYXNzbzogcGFyYSByZXByb2R1emlyLCB0cmFkdXppciBlIGRpc3RyaWJ1aXIgc3VhIHN1Ym1pc3PDo28gZW0gdG9kbyBvIG11bmRvLCB2b2PDqiBkZXZlIGNvbmNvcmRhciBjb20gb3MgdGVybW9zIGEgc2VndWlyLgoKQ29uY29yZGFyIGNvbSBvIFRlcm1vIGRlIExpY2VuY2lhbWVudG8sIHNlbGVjaW9uYW5kbyAiRXUgY29uY29yZG8gY29tIG8gVGVybW8gZGUgTGljZW5jaWFtZW50byIgZSBjbGlxdWUgZW0gIkZpbmFsaXphciBzdWJtaXNzw6NvIi4KClRFUk1PUyBMSUNFTkNJQU1FTlRPIFBBUkEgQVJRVUlWQU1FTlRPLCBSRVBST0RVw4fDg08gRSBESVZVTEdBw4fDg08gUMOaQkxJQ0EgREUgQ09OVEXDmkRPIMOAIEJJQkxJT1RFQ0EgVklSVFVBTCBGR1YgKHZlcnPDo28gMS4yKQoKMS4gVm9jw6osIHVzdcOhcmlvLWRlcG9zaXRhbnRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YsIGFzc2VndXJhLCBubyBwcmVzZW50ZSBhdG8sIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBkaXJlaXRvcyBjb25leG9zIHJlZmVyZW50ZXMgw6AgdG90YWxpZGFkZSBkYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVtIGZvcm1hdG8gZGlnaXRhbCwgYmVtIGNvbW8gZGUgc2V1cyBjb21wb25lbnRlcyBtZW5vcmVzLCBlbSBzZSB0cmF0YW5kbyBkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpIDkuNjA5Lzk4LiBOw6NvIHNlbmRvIGVzdGUgbyBjYXNvLCB2b2PDqiBhc3NlZ3VyYSB0ZXIgb2J0aWRvLCBkaXJldGFtZW50ZSBkb3MgZGV2aWRvcyB0aXR1bGFyZXMsIGF1dG9yaXphw6fDo28gcHLDqXZpYSBlIGV4cHJlc3NhIHBhcmEgbyBkZXDDs3NpdG8gZSBkaXZ1bGdhw6fDo28gZGEgT2JyYSwgYWJyYW5nZW5kbyB0b2RvcyBvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmV4b3MgYWZldGFkb3MgcGVsYSBhc3NpbmF0dXJhIGRvcyBwcmVzZW50ZXMgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8sIGRlIG1vZG8gYSBlZmV0aXZhbWVudGUgaXNlbnRhciBhIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMgZSBzZXVzIGZ1bmNpb27DoXJpb3MgZGUgcXVhbHF1ZXIgcmVzcG9uc2FiaWxpZGFkZSBwZWxvIHVzbyBuw6NvLWF1dG9yaXphZG8gZG8gbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgc2VqYSBlbSB2aW5jdWxhw6fDo28gYSBxdWFpc3F1ZXIgc2VydmnDp29zIGRlIGJ1c2NhIGUgZGlzdHJpYnVpw6fDo28gZGUgY29udGXDumRvIHF1ZSBmYcOnYW0gdXNvIGRhcyBpbnRlcmZhY2VzIGUgZXNwYcOnbyBkZSBhcm1hemVuYW1lbnRvIHByb3ZpZGVuY2lhZG9zIHBlbGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBwb3IgbWVpbyBkZSBzZXVzIHNpc3RlbWFzIGluZm9ybWF0aXphZG9zLgoKMi4gQSBhc3NpbmF0dXJhIGRlc3RhIGxpY2Vuw6dhIHRlbSBjb21vIGNvbnNlccO8w6puY2lhIGEgdHJhbnNmZXLDqm5jaWEsIGEgdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMgb3UgcXVhbHF1ZXIgb3V0cmEgY29udHJhcHJlc3Rhw6fDo28sIHBlY3VuacOhcmlhIG91IG7Do28sIMOgIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMsIGRvcyBkaXJlaXRvcyBkZSBhcm1hemVuYXIgZGlnaXRhbG1lbnRlLCByZXByb2R1emlyIGUgZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldSByZXN1bW8vYWJzdHJhY3QsIHBvciBtZWlvcyBlbGV0csO0bmljb3MsIG5vIHNpdGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYW8gcMO6YmxpY28gZW0gZ2VyYWwsIGVtIHJlZ2ltZSBkZSBhY2Vzc28gYWJlcnRvLgoKMy4gQSBwcmVzZW50ZSBsaWNlbsOnYSB0YW1iw6ltIGFicmFuZ2UsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgcXVhbHF1ZXIgZGlyZWl0byBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIGNhYsOtdmVsIGVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgIHJlcHJlc2VudGHDp8OjbyBww7pibGljYSBlL291IGV4ZWN1w6fDo28gcMO6YmxpY2EsIGJlbSBjb21vIHF1YWxxdWVyIG91dHJhIG1vZGFsaWRhZGUgZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBxdWUgZXhpc3RhIG91IHZlbmhhIGEgZXhpc3Rpciwgbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlIGZvciBhcGxpY8OhdmVsIGFvcyBzZXJ2acOnb3MgcHJlc3RhZG9zIGFvIHDDumJsaWNvIHBlbGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjQuIEVzdGEgbGljZW7Dp2EgYWJyYW5nZSwgYWluZGEsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgdG9kb3Mgb3MgZGlyZWl0b3MgY29uZXhvcyBkZSBhcnRpc3RhcyBpbnTDqXJwcmV0ZXMgb3UgZXhlY3V0YW50ZXMsIHByb2R1dG9yZXMgZm9ub2dyw6FmaWNvcyBvdSBlbXByZXNhcyBkZSByYWRpb2RpZnVzw6NvIHF1ZSBldmVudHVhbG1lbnRlIHNlamFtIGFwbGljw6F2ZWlzIGVtIHJlbGHDp8OjbyDDoCBvYnJhIGRlcG9zaXRhZGEsIGVtIGNvbmZvcm1pZGFkZSBjb20gbyByZWdpbWUgZml4YWRvIG5vIFTDrXR1bG8gViBkYSBMZWkgOS42MTAvOTguCgo1LiBTZSBhIE9icmEgZGVwb3NpdGFkYSBmb2kgb3Ugw6kgb2JqZXRvIGRlIGZpbmFuY2lhbWVudG8gcG9yIGluc3RpdHVpw6fDtWVzIGRlIGZvbWVudG8gw6AgcGVzcXVpc2Egb3UgcXVhbHF1ZXIgb3V0cmEgc2VtZWxoYW50ZSwgdm9jw6ogb3UgbyB0aXR1bGFyIGFzc2VndXJhIHF1ZSBjdW1wcml1IHRvZGFzIGFzIG9icmlnYcOnw7VlcyBxdWUgbGhlIGZvcmFtIGltcG9zdGFzIHBlbGEgaW5zdGl0dWnDp8OjbyBmaW5hbmNpYWRvcmEgZW0gcmF6w6NvIGRvIGZpbmFuY2lhbWVudG8sIGUgcXVlIG7Do28gZXN0w6EgY29udHJhcmlhbmRvIHF1YWxxdWVyIGRpc3Bvc2nDp8OjbyBjb250cmF0dWFsIHJlZmVyZW50ZSDDoCBwdWJsaWNhw6fDo28gZG8gY29udGXDumRvIG9yYSBzdWJtZXRpZG8gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjYuIENhc28gYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVuY29udHJlLXNlIGxpY2VuY2lhZGEgc29iIHVtYSBsaWNlbsOnYSBDcmVhdGl2ZSBDb21tb25zIChxdWFscXVlciB2ZXJzw6NvKSwgc29iIGEgbGljZW7Dp2EgR05VIEZyZWUgRG9jdW1lbnRhdGlvbiBMaWNlbnNlIChxdWFscXVlciB2ZXJzw6NvKSwgb3Ugb3V0cmEgbGljZW7Dp2EgcXVhbGlmaWNhZGEgY29tbyBsaXZyZSBzZWd1bmRvIG9zIGNyaXTDqXJpb3MgZGEgRGVmaW5pdGlvbiBvZiBGcmVlIEN1bHR1cmFsIFdvcmtzIChkaXNwb27DrXZlbCBlbTogaHR0cDovL2ZyZWVkb21kZWZpbmVkLm9yZy9EZWZpbml0aW9uKSBvdSBGcmVlIFNvZnR3YXJlIERlZmluaXRpb24gKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vd3d3LmdudS5vcmcvcGhpbG9zb3BoeS9mcmVlLXN3Lmh0bWwpLCBvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbSBjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcyBsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIgYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEgaW50ZWdyYWwuCgpBbyBjb25jbHVpciBhIHByZXNlbnRlIGV0YXBhIGUgYXMgZXRhcGFzIHN1YnNlccO8ZW50ZXMgZG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlIGNvbmNvcmRhIGludGVncmFsbWVudGUgY29tIG9zIHRlcm1vcyBhY2ltYSBkZWxpbWl0YWRvcywgYXNzaW5hbmRvLW9zIHNlbSBmYXplciBxdWFscXVlciByZXNlcnZhIGUgbm92YW1lbnRlIGNvbmZpcm1hbmRvIHF1ZSBjdW1wcmUgb3MgcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4KCkhhdmVuZG8gcXVhbHF1ZXIgZGlzY29yZMOibmNpYSBlbSByZWxhw6fDo28gYW9zIHByZXNlbnRlcyB0ZXJtb3Mgb3UgbsOjbyBzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlciBpbWVkaWF0YW1lbnRlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8Ojby4gQSBjb250aW51aWRhZGUgZG8gcHJvY2Vzc28gZXF1aXZhbGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXHDvMOqbmNpYXMgbmVsZSBwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvIG7Do28gc2VqYSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBjb25leG9zIGFwbGljw6F2ZWlzIMOgIE9icmEgZGVwb3NpdGFkYSBkdXJhbnRlIGVzdGUgcHJvY2Vzc28sIG91IGNhc28gbsOjbyB0ZW5oYSBvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUgdG9kb3Mgb3MgdXNvcyBkYSBPYnJhIGVudm9sdmlkb3MuCgpQYXJhIGEgc29sdcOnw6NvIGRlIHF1YWxxdWVyIGTDunZpZGEgcXVhbnRvIGFvcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50byBlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbywgY2xpcXVlIG5vIGxpbmsgIkZhbGUgY29ub3NjbyIuCgpTZSB2b2PDqiB0aXZlciBkw7p2aWRhcyBzb2JyZSBlc3RhIGxpY2Vuw6dhLCBwb3IgZmF2b3IgZW50cmUgZW0gY29udGF0byBjb20gb3MgYWRtaW5pc3RyYWRvcmVzIGRvIFJlcG9zaXTDs3Jpby4K
dc.title.eng.fl_str_mv Predicting BTC price trends with social media sentiment: leveraging transformers model
title Predicting BTC price trends with social media sentiment: leveraging transformers model
spellingShingle Predicting BTC price trends with social media sentiment: leveraging transformers model
Hidalgo, Rodrigo Soares de Andrade
Bitcoin
Transformers
Machine learning
Aprendizado de máquina
Economia
Bitcoin
Volatilidade (Finanças)
Preços
Investimentos - Processo decisório
Aprendizado do computador
title_short Predicting BTC price trends with social media sentiment: leveraging transformers model
title_full Predicting BTC price trends with social media sentiment: leveraging transformers model
title_fullStr Predicting BTC price trends with social media sentiment: leveraging transformers model
title_full_unstemmed Predicting BTC price trends with social media sentiment: leveraging transformers model
title_sort Predicting BTC price trends with social media sentiment: leveraging transformers model
author Hidalgo, Rodrigo Soares de Andrade
author_facet Hidalgo, Rodrigo Soares de Andrade
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.member.none.fl_str_mv Santana, Lucas
Mendes, Eduardo Fonseca
dc.contributor.author.fl_str_mv Hidalgo, Rodrigo Soares de Andrade
dc.contributor.advisor1.fl_str_mv Colombo, Jefferson Augusto
contributor_str_mv Colombo, Jefferson Augusto
dc.subject.eng.fl_str_mv Bitcoin
Transformers
Machine learning
topic Bitcoin
Transformers
Machine learning
Aprendizado de máquina
Economia
Bitcoin
Volatilidade (Finanças)
Preços
Investimentos - Processo decisório
Aprendizado do computador
dc.subject.por.fl_str_mv Aprendizado de máquina
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Bitcoin
Volatilidade (Finanças)
Preços
Investimentos - Processo decisório
Aprendizado do computador
description This study explores the prediction of BTC (BTC) price movements using sentiment analysis from social media, combined with advanced machine learning techniques, with a particular focus on the innovative application of Transformers. In a highly volatile financial market sensitive to external influences, understanding the impact of investor sentiment is crucial for predicting price trends. This work employs sentiment data extracted from plat- forms such as Twitter and Reddit, processed through natural language processing (NLP) techniques to categorize sentiment as positive, negative, or neutral. The Transformer model is utilized to develop forecasts on the future direction of BTC prices. Known for its ability to capture complex temporal patterns and dependencies over long sequences, the Transformer enhances prediction accuracy by effectively modeling long-range dependencies in sequential data. The study implements a sensitivity analysis to assess the impact of different sentiment intensities on BTC prices, providing a deeper understanding of market dynamics influenced by sentiment events, such as large ”whale” transactions or significant news. The expected results include improved accuracy in predicting BTC price movements, offering valuable insights for traders and investors. This work contributes to the existing body of research on the use of sentiment analysis in financial markets, particularly in the context of cryptocurrencies, and underscores the potential of Transformers as powerful tools for forecasting market trends based on sentiment data.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-03-14T18:15:52Z
dc.date.available.fl_str_mv 2025-03-14T18:15:52Z
dc.date.issued.fl_str_mv 2025-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/36647
url https://hdl.handle.net/10438/36647
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/42027161-8d01-494b-96db-20e7225e56c7/download
https://repositorio.fgv.br/bitstreams/31532843-f84f-4df9-a294-689a3b5b442a/download
https://repositorio.fgv.br/bitstreams/7f19f7ac-08fe-4b6e-b426-8c032574b0d2/download
https://repositorio.fgv.br/bitstreams/28816ee1-d7a2-4a78-a948-3b3d65a8bded/download
bitstream.checksum.fl_str_mv e32c980ed7fa50e1720628d84fffaab1
2a4b67231f701c416a809246e7a10077
d26c567e40de61eb8b8178b74b8ba74c
518467214b281c3847a617577aa2af3d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1827842384177659904