A framework for automation of data recording, modelling, and optimal statistical control of production lines
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/80033/0013000001wn4 |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal do Cariri
|
| Programa de Pós-Graduação: |
Programa de Desenvolvimento Regional Sustentável
|
| Departamento: |
Universidade Federal do Cariri
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://deposita.ibict.br/handle/deposita/420 |
Resumo: | Unarguably, the automation of data collection and subsequent statistical treatment enhance the quality of industrial management systems. The rise of accessible digital technologies hás enabled the introduction of the Industry 4.0 pillars in Cariri local companies. Particularly, such practice positively contributes to the triple bottom line of sustainable development: People, Environment, and Economy. The present work aims to provide a general automated framework for data recording and statistical control of conveyor belts in production lines. The software has been developed in three layers: graphical user interface, in PHP language; database collection, search, and safeguard, in MySQL; computational statistics, in R; and hardware control, in C. The computational statistics are based on the combination of artificial neural nets and autoregressive integrated and moving average models, via minimal variance method. The hardware components are composed by open source hardware as Arduino based boards and modular or industrial sensors. Specifically, the embedded system is designed to constantly monitor and record a number of measurable characteristics of the conveyor belts (e.g. electric consumption and temperature), via a number of sensors, allowing both the computation of statistical control metrics and the evaluation of the quality of the production system. As a case study, the project makes use of a laminated limestone production line, located at the Mineral Technology Center, Nova Olinda, Ceará state, Brazil. |
| id |
IBICT-1_d4cc61b583e004801cc2776469297fec |
|---|---|
| oai_identifier_str |
oai:deposita.ibict.br:deposita/420 |
| network_acronym_str |
IBICT-1 |
| network_name_str |
Repositório Comum do Brasil - Deposita |
| repository_id_str |
|
| spelling |
Leal, Flávio Murilo de Carvalhohttp://lattes.cnpq.br/8201140317366536Firmino, Paulo Renato Alves2023-09-05T18:31:22Z2020https://deposita.ibict.br/handle/deposita/420ark:/80033/0013000001wn4Unarguably, the automation of data collection and subsequent statistical treatment enhance the quality of industrial management systems. The rise of accessible digital technologies hás enabled the introduction of the Industry 4.0 pillars in Cariri local companies. Particularly, such practice positively contributes to the triple bottom line of sustainable development: People, Environment, and Economy. The present work aims to provide a general automated framework for data recording and statistical control of conveyor belts in production lines. The software has been developed in three layers: graphical user interface, in PHP language; database collection, search, and safeguard, in MySQL; computational statistics, in R; and hardware control, in C. The computational statistics are based on the combination of artificial neural nets and autoregressive integrated and moving average models, via minimal variance method. The hardware components are composed by open source hardware as Arduino based boards and modular or industrial sensors. Specifically, the embedded system is designed to constantly monitor and record a number of measurable characteristics of the conveyor belts (e.g. electric consumption and temperature), via a number of sensors, allowing both the computation of statistical control metrics and the evaluation of the quality of the production system. As a case study, the project makes use of a laminated limestone production line, located at the Mineral Technology Center, Nova Olinda, Ceará state, Brazil.Indiscutivelmente, a automação da coleta de dados e o subsequente tratamento estatístico aumentam a qualidade dos sistemas de gestão industrial. O surgimento de tecnologias digitais acessíveis possibilitou a introdução dos pilares da Indústria 4.0 nas empresas locais do Cariri. Particularmente, tal prática contribui positivamente para o triplo resultado do desenvolvimento sustentável: Pessoas, Meio Ambiente e Economia. O presente trabalho tem como objetivo fornecer um Framework geral automatizado para registro de dados e controle estatístico de esteiras transportadoras em linhas de produção. O software foi desenvolvido em três camadas: interface gráfica do usuário, em linguagem PHP; coleta, pesquisa e proteção de banco de dados em MySQL; estatística computacional, em R; e controle de hardware, em C. As estatísticas computacionais são baseadas na combinação de redes neurais artificiais e modelos autorregressivos integrados e de média móvel, via método de mínima variância. Os componentes de hardware são compostos por hardware open source como placas baseadas em Arduino e sensores modulares ou industriais. Especificamente, o sistema embarcado é projetado para monitorar e registrar constantemente uma série de características mensuráveis das esteiras transportadoras (por exemplo, consumo elétrico e temperatura), por meio de uma série de sensores, permitindo tanto o cálculo de métricas de controle estatístico quanto a avaliação da qualidade do sistema de produção. Como estudo de caso, o projeto utiliza uma linha de produção de calcário laminado, localizada no Centro de Tecnologia Mineral, Nova Olinda, Ceará, Brasil.Nordeste-1application/pdfengUniversidade Federal do CaririPrograma de Desenvolvimento Regional SustentávelBrasilUniversidade Federal do CaririQuality controlAutomationStatistical modellingEmbedded systemsCiência da ComputaçãoA framework for automation of data recording, modelling, and optimal statistical control of production linesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Comum do Brasil - Depositainstname:Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)instacron:IBICTTEXTDesenvolvimento Regional Sustentável (UFCA) - Flávio Murilo.pdf.txtWritten by FormatFilter org.dspace.app.mediafilter.TikaTextExtractionFilter on 2025-06-06T20:15:11Z (GMT).Extracted texttext/plain100988https://deposita.ibict.br/bitstreams/b7fe52e5-3b0d-44ed-8ab1-b20de6cb24a2/downloadf40b79738890e978cbb8502992ba4f5cMD53falseAnonymousREADTHUMBNAILDesenvolvimento Regional Sustentável (UFCA) - Flávio Murilo.pdf.jpgWritten by FormatFilter org.dspace.app.mediafilter.PDFBoxThumbnail on 2025-06-06T20:15:12Z (GMT).Generated Thumbnailimage/jpeg3194https://deposita.ibict.br/bitstreams/6d0d47f3-89f4-4b94-b510-4b6f9abc7d0c/download3257e91774d543ea02bb48dec578a459MD54falseAnonymousREADLICENSElicense.txtWritten by org.dspace.content.LicenseUtilstext/plain; charset=utf-81867https://deposita.ibict.br/bitstreams/ac970d2d-c623-4221-b691-5a9a4e957001/downloada7c148eec59885ba1ba6d14692be8465MD51falseAnonymousREADORIGINALDesenvolvimento Regional Sustentável (UFCA) - Flávio Murilo.pdf/dspace/deposita/upload/Desenvolvimento Regional Sustentável (UFCA) - Flávio Murilo.pdfapplication/pdf20859790https://deposita.ibict.br/bitstreams/213562f4-b0d0-481d-97bf-1b09c8d95d35/downloaddc20efd3e9f82be8f812bd1bd809478fMD52trueAnonymousREADdeposita/4202025-06-06T20:15:12.146Zopen.accessoai:deposita.ibict.br:deposita/420https://deposita.ibict.brRepositório ComumPUBhttp://deposita.ibict.br/oai/requestdeposita@ibict.bropendoar:46582025-06-06T20:15:12Repositório Comum do Brasil - Deposita - Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIENvbXVtCmRvIEJyYXNpbCAoRGVwb3NpdGEpIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEKc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcwpmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0bwpwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAKZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLgpWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMKZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZQpvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gRGVwb3NpdGEgb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvCm91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPCk9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zCmF1dG9yYWlzIGRhIHB1YmxpY2HDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKCg== |
| dc.title.por.fl_str_mv |
A framework for automation of data recording, modelling, and optimal statistical control of production lines |
| title |
A framework for automation of data recording, modelling, and optimal statistical control of production lines |
| spellingShingle |
A framework for automation of data recording, modelling, and optimal statistical control of production lines Leal, Flávio Murilo de Carvalho Quality control Automation Statistical modelling Embedded systems Ciência da Computação |
| title_short |
A framework for automation of data recording, modelling, and optimal statistical control of production lines |
| title_full |
A framework for automation of data recording, modelling, and optimal statistical control of production lines |
| title_fullStr |
A framework for automation of data recording, modelling, and optimal statistical control of production lines |
| title_full_unstemmed |
A framework for automation of data recording, modelling, and optimal statistical control of production lines |
| title_sort |
A framework for automation of data recording, modelling, and optimal statistical control of production lines |
| author |
Leal, Flávio Murilo de Carvalho |
| author_facet |
Leal, Flávio Murilo de Carvalho |
| author_role |
author |
| dc.contributor.authorLattes.por.fl_str_mv |
http://lattes.cnpq.br/8201140317366536 |
| dc.contributor.author.fl_str_mv |
Leal, Flávio Murilo de Carvalho |
| dc.contributor.advisor1.fl_str_mv |
Firmino, Paulo Renato Alves |
| contributor_str_mv |
Firmino, Paulo Renato Alves |
| dc.subject.eng.fl_str_mv |
Quality control Automation Statistical modelling |
| topic |
Quality control Automation Statistical modelling Embedded systems Ciência da Computação |
| dc.subject.por.fl_str_mv |
Embedded systems |
| dc.subject.cnpq.fl_str_mv |
Ciência da Computação |
| description |
Unarguably, the automation of data collection and subsequent statistical treatment enhance the quality of industrial management systems. The rise of accessible digital technologies hás enabled the introduction of the Industry 4.0 pillars in Cariri local companies. Particularly, such practice positively contributes to the triple bottom line of sustainable development: People, Environment, and Economy. The present work aims to provide a general automated framework for data recording and statistical control of conveyor belts in production lines. The software has been developed in three layers: graphical user interface, in PHP language; database collection, search, and safeguard, in MySQL; computational statistics, in R; and hardware control, in C. The computational statistics are based on the combination of artificial neural nets and autoregressive integrated and moving average models, via minimal variance method. The hardware components are composed by open source hardware as Arduino based boards and modular or industrial sensors. Specifically, the embedded system is designed to constantly monitor and record a number of measurable characteristics of the conveyor belts (e.g. electric consumption and temperature), via a number of sensors, allowing both the computation of statistical control metrics and the evaluation of the quality of the production system. As a case study, the project makes use of a laminated limestone production line, located at the Mineral Technology Center, Nova Olinda, Ceará state, Brazil. |
| publishDate |
2020 |
| dc.date.issued.fl_str_mv |
2020 |
| dc.date.accessioned.fl_str_mv |
2023-09-05T18:31:22Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://deposita.ibict.br/handle/deposita/420 |
| dc.identifier.dark.fl_str_mv |
ark:/80033/0013000001wn4 |
| url |
https://deposita.ibict.br/handle/deposita/420 |
| identifier_str_mv |
ark:/80033/0013000001wn4 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Cariri |
| dc.publisher.program.fl_str_mv |
Programa de Desenvolvimento Regional Sustentável |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Universidade Federal do Cariri |
| publisher.none.fl_str_mv |
Universidade Federal do Cariri |
| dc.source.none.fl_str_mv |
reponame:Repositório Comum do Brasil - Deposita instname:Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict) instacron:IBICT |
| instname_str |
Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict) |
| instacron_str |
IBICT |
| institution |
IBICT |
| reponame_str |
Repositório Comum do Brasil - Deposita |
| collection |
Repositório Comum do Brasil - Deposita |
| bitstream.url.fl_str_mv |
https://deposita.ibict.br/bitstreams/b7fe52e5-3b0d-44ed-8ab1-b20de6cb24a2/download https://deposita.ibict.br/bitstreams/6d0d47f3-89f4-4b94-b510-4b6f9abc7d0c/download https://deposita.ibict.br/bitstreams/ac970d2d-c623-4221-b691-5a9a4e957001/download https://deposita.ibict.br/bitstreams/213562f4-b0d0-481d-97bf-1b09c8d95d35/download |
| bitstream.checksum.fl_str_mv |
f40b79738890e978cbb8502992ba4f5c 3257e91774d543ea02bb48dec578a459 a7c148eec59885ba1ba6d14692be8465 dc20efd3e9f82be8f812bd1bd809478f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Comum do Brasil - Deposita - Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict) |
| repository.mail.fl_str_mv |
deposita@ibict.br |
| _version_ |
1856928463060992000 |