A framework for automation of data recording, modelling, and optimal statistical control of production lines

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Leal, Flávio Murilo de Carvalho
Orientador(a): Firmino, Paulo Renato Alves
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/80033/0013000001wn4
Idioma: eng
Instituição de defesa: Universidade Federal do Cariri
Programa de Pós-Graduação: Programa de Desenvolvimento Regional Sustentável
Departamento: Universidade Federal do Cariri
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://deposita.ibict.br/handle/deposita/420
Resumo: Unarguably, the automation of data collection and subsequent statistical treatment enhance the quality of industrial management systems. The rise of accessible digital technologies hás enabled the introduction of the Industry 4.0 pillars in Cariri local companies. Particularly, such practice positively contributes to the triple bottom line of sustainable development: People, Environment, and Economy. The present work aims to provide a general automated framework for data recording and statistical control of conveyor belts in production lines. The software has been developed in three layers: graphical user interface, in PHP language; database collection, search, and safeguard, in MySQL; computational statistics, in R; and hardware control, in C. The computational statistics are based on the combination of artificial neural nets and autoregressive integrated and moving average models, via minimal variance method. The hardware components are composed by open source hardware as Arduino based boards and modular or industrial sensors. Specifically, the embedded system is designed to constantly monitor and record a number of measurable characteristics of the conveyor belts (e.g. electric consumption and temperature), via a number of sensors, allowing both the computation of statistical control metrics and the evaluation of the quality of the production system. As a case study, the project makes use of a laminated limestone production line, located at the Mineral Technology Center, Nova Olinda, Ceará state, Brazil.
id IBICT-1_d4cc61b583e004801cc2776469297fec
oai_identifier_str oai:deposita.ibict.br:deposita/420
network_acronym_str IBICT-1
network_name_str Repositório Comum do Brasil - Deposita
repository_id_str
spelling Leal, Flávio Murilo de Carvalhohttp://lattes.cnpq.br/8201140317366536Firmino, Paulo Renato Alves2023-09-05T18:31:22Z2020https://deposita.ibict.br/handle/deposita/420ark:/80033/0013000001wn4Unarguably, the automation of data collection and subsequent statistical treatment enhance the quality of industrial management systems. The rise of accessible digital technologies hás enabled the introduction of the Industry 4.0 pillars in Cariri local companies. Particularly, such practice positively contributes to the triple bottom line of sustainable development: People, Environment, and Economy. The present work aims to provide a general automated framework for data recording and statistical control of conveyor belts in production lines. The software has been developed in three layers: graphical user interface, in PHP language; database collection, search, and safeguard, in MySQL; computational statistics, in R; and hardware control, in C. The computational statistics are based on the combination of artificial neural nets and autoregressive integrated and moving average models, via minimal variance method. The hardware components are composed by open source hardware as Arduino based boards and modular or industrial sensors. Specifically, the embedded system is designed to constantly monitor and record a number of measurable characteristics of the conveyor belts (e.g. electric consumption and temperature), via a number of sensors, allowing both the computation of statistical control metrics and the evaluation of the quality of the production system. As a case study, the project makes use of a laminated limestone production line, located at the Mineral Technology Center, Nova Olinda, Ceará state, Brazil.Indiscutivelmente, a automação da coleta de dados e o subsequente tratamento estatístico aumentam a qualidade dos sistemas de gestão industrial. O surgimento de tecnologias digitais acessíveis possibilitou a introdução dos pilares da Indústria 4.0 nas empresas locais do Cariri. Particularmente, tal prática contribui positivamente para o triplo resultado do desenvolvimento sustentável: Pessoas, Meio Ambiente e Economia. O presente trabalho tem como objetivo fornecer um Framework geral automatizado para registro de dados e controle estatístico de esteiras transportadoras em linhas de produção. O software foi desenvolvido em três camadas: interface gráfica do usuário, em linguagem PHP; coleta, pesquisa e proteção de banco de dados em MySQL; estatística computacional, em R; e controle de hardware, em C. As estatísticas computacionais são baseadas na combinação de redes neurais artificiais e modelos autorregressivos integrados e de média móvel, via método de mínima variância. Os componentes de hardware são compostos por hardware open source como placas baseadas em Arduino e sensores modulares ou industriais. Especificamente, o sistema embarcado é projetado para monitorar e registrar constantemente uma série de características mensuráveis das esteiras transportadoras (por exemplo, consumo elétrico e temperatura), por meio de uma série de sensores, permitindo tanto o cálculo de métricas de controle estatístico quanto a avaliação da qualidade do sistema de produção. Como estudo de caso, o projeto utiliza uma linha de produção de calcário laminado, localizada no Centro de Tecnologia Mineral, Nova Olinda, Ceará, Brasil.Nordeste-1application/pdfengUniversidade Federal do CaririPrograma de Desenvolvimento Regional SustentávelBrasilUniversidade Federal do CaririQuality controlAutomationStatistical modellingEmbedded systemsCiência da ComputaçãoA framework for automation of data recording, modelling, and optimal statistical control of production linesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Comum do Brasil - Depositainstname:Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)instacron:IBICTTEXTDesenvolvimento Regional Sustentável (UFCA) - Flávio Murilo.pdf.txtWritten by FormatFilter org.dspace.app.mediafilter.TikaTextExtractionFilter on 2025-06-06T20:15:11Z (GMT).Extracted texttext/plain100988https://deposita.ibict.br/bitstreams/b7fe52e5-3b0d-44ed-8ab1-b20de6cb24a2/downloadf40b79738890e978cbb8502992ba4f5cMD53falseAnonymousREADTHUMBNAILDesenvolvimento Regional Sustentável (UFCA) - Flávio Murilo.pdf.jpgWritten by FormatFilter org.dspace.app.mediafilter.PDFBoxThumbnail on 2025-06-06T20:15:12Z (GMT).Generated Thumbnailimage/jpeg3194https://deposita.ibict.br/bitstreams/6d0d47f3-89f4-4b94-b510-4b6f9abc7d0c/download3257e91774d543ea02bb48dec578a459MD54falseAnonymousREADLICENSElicense.txtWritten by org.dspace.content.LicenseUtilstext/plain; charset=utf-81867https://deposita.ibict.br/bitstreams/ac970d2d-c623-4221-b691-5a9a4e957001/downloada7c148eec59885ba1ba6d14692be8465MD51falseAnonymousREADORIGINALDesenvolvimento Regional Sustentável (UFCA) - Flávio Murilo.pdf/dspace/deposita/upload/Desenvolvimento Regional Sustentável (UFCA) - Flávio Murilo.pdfapplication/pdf20859790https://deposita.ibict.br/bitstreams/213562f4-b0d0-481d-97bf-1b09c8d95d35/downloaddc20efd3e9f82be8f812bd1bd809478fMD52trueAnonymousREADdeposita/4202025-06-06T20:15:12.146Zopen.accessoai:deposita.ibict.br:deposita/420https://deposita.ibict.brRepositório ComumPUBhttp://deposita.ibict.br/oai/requestdeposita@ibict.bropendoar:46582025-06-06T20:15:12Repositório Comum do Brasil - Deposita - Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIENvbXVtCmRvIEJyYXNpbCAoRGVwb3NpdGEpIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEKc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcwpmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0bwpwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAKZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLgpWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMKZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZQpvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gRGVwb3NpdGEgb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvCm91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPCk9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zCmF1dG9yYWlzIGRhIHB1YmxpY2HDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKCg==
dc.title.por.fl_str_mv A framework for automation of data recording, modelling, and optimal statistical control of production lines
title A framework for automation of data recording, modelling, and optimal statistical control of production lines
spellingShingle A framework for automation of data recording, modelling, and optimal statistical control of production lines
Leal, Flávio Murilo de Carvalho
Quality control
Automation
Statistical modelling
Embedded systems
Ciência da Computação
title_short A framework for automation of data recording, modelling, and optimal statistical control of production lines
title_full A framework for automation of data recording, modelling, and optimal statistical control of production lines
title_fullStr A framework for automation of data recording, modelling, and optimal statistical control of production lines
title_full_unstemmed A framework for automation of data recording, modelling, and optimal statistical control of production lines
title_sort A framework for automation of data recording, modelling, and optimal statistical control of production lines
author Leal, Flávio Murilo de Carvalho
author_facet Leal, Flávio Murilo de Carvalho
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/8201140317366536
dc.contributor.author.fl_str_mv Leal, Flávio Murilo de Carvalho
dc.contributor.advisor1.fl_str_mv Firmino, Paulo Renato Alves
contributor_str_mv Firmino, Paulo Renato Alves
dc.subject.eng.fl_str_mv Quality control
Automation
Statistical modelling
topic Quality control
Automation
Statistical modelling
Embedded systems
Ciência da Computação
dc.subject.por.fl_str_mv Embedded systems
dc.subject.cnpq.fl_str_mv Ciência da Computação
description Unarguably, the automation of data collection and subsequent statistical treatment enhance the quality of industrial management systems. The rise of accessible digital technologies hás enabled the introduction of the Industry 4.0 pillars in Cariri local companies. Particularly, such practice positively contributes to the triple bottom line of sustainable development: People, Environment, and Economy. The present work aims to provide a general automated framework for data recording and statistical control of conveyor belts in production lines. The software has been developed in three layers: graphical user interface, in PHP language; database collection, search, and safeguard, in MySQL; computational statistics, in R; and hardware control, in C. The computational statistics are based on the combination of artificial neural nets and autoregressive integrated and moving average models, via minimal variance method. The hardware components are composed by open source hardware as Arduino based boards and modular or industrial sensors. Specifically, the embedded system is designed to constantly monitor and record a number of measurable characteristics of the conveyor belts (e.g. electric consumption and temperature), via a number of sensors, allowing both the computation of statistical control metrics and the evaluation of the quality of the production system. As a case study, the project makes use of a laminated limestone production line, located at the Mineral Technology Center, Nova Olinda, Ceará state, Brazil.
publishDate 2020
dc.date.issued.fl_str_mv 2020
dc.date.accessioned.fl_str_mv 2023-09-05T18:31:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://deposita.ibict.br/handle/deposita/420
dc.identifier.dark.fl_str_mv ark:/80033/0013000001wn4
url https://deposita.ibict.br/handle/deposita/420
identifier_str_mv ark:/80033/0013000001wn4
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Cariri
dc.publisher.program.fl_str_mv Programa de Desenvolvimento Regional Sustentável
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Universidade Federal do Cariri
publisher.none.fl_str_mv Universidade Federal do Cariri
dc.source.none.fl_str_mv reponame:Repositório Comum do Brasil - Deposita
instname:Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)
instacron:IBICT
instname_str Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)
instacron_str IBICT
institution IBICT
reponame_str Repositório Comum do Brasil - Deposita
collection Repositório Comum do Brasil - Deposita
bitstream.url.fl_str_mv https://deposita.ibict.br/bitstreams/b7fe52e5-3b0d-44ed-8ab1-b20de6cb24a2/download
https://deposita.ibict.br/bitstreams/6d0d47f3-89f4-4b94-b510-4b6f9abc7d0c/download
https://deposita.ibict.br/bitstreams/ac970d2d-c623-4221-b691-5a9a4e957001/download
https://deposita.ibict.br/bitstreams/213562f4-b0d0-481d-97bf-1b09c8d95d35/download
bitstream.checksum.fl_str_mv f40b79738890e978cbb8502992ba4f5c
3257e91774d543ea02bb48dec578a459
a7c148eec59885ba1ba6d14692be8465
dc20efd3e9f82be8f812bd1bd809478f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Comum do Brasil - Deposita - Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)
repository.mail.fl_str_mv deposita@ibict.br
_version_ 1856928463060992000