Development of a passive microwave-based satellite precipitation estimation algorithm for Brazil

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Lia Martins Costa do Amaral
Orientador(a): Daniel Alejandro Vila
Banca de defesa: Luiz Augusto Toledo Machado, Giulia Panegrossi, Enrique Vieira Mattos
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Instituto Nacional de Pesquisas Espaciais (INPE)
Programa de Pós-Graduação: Programa de Pós-Graduação do INPE em Meteorologia
Departamento: Não Informado pela instituição
País: BR
Link de acesso: http://urlib.net/sid.inpe.br/mtc-m21c/2019/05.14.19.52
Resumo: In order to develop a passive microwave-based satellite precipitation estimation algorithm optimized for Brazil, this work was divided in two parts. The first part consisted in extending the cloud-radiation database used as a priori information for the Cloud Dynamics and Radiation Database (CDRD) Bayesian algorithm in order to include the cloud resolving model simulations representative of brazilian rainfall regimes. Simulations of microphysical, dynamical and meteorological profiles were then generated using the University of Wisconsin - Nonhydrostatic Modeling System and the brightness temperature (TB) simulations were generated using the Radiative Transfer Equation Modeling System for the CHUVA (Amazon and Vale) golden cases and compared with observed TB. The results demonstrated that the simulations detected perturbations in the TB fields (in space and time) however in terms of the range of temperature values, the model did not reproduce the lowest values of TB that were present in the observations. The model also seemed to struggle with the riming process on graupel formation, providing small amounts of graupel content. These results demonstrated that the models needed adjustments to be able to describe the regional features of TB across a wide range of meteorological systems in Brazil. For these reasons, the second part of the work was developed by making use of an observational database from the sensors GPM Microwave Imager and Dualfrequency Precipitation Radar (GMI/DPR-CMB) in order to develop a screening of precipitation and rainfall retrieval algorithm over Brazil, based on artificial neural networks (ANN) and called Neural Network IMplementation of the Brazilian MUltilayer Perceptron for Screening and precipitation retrieval (NNIMBUS). The precipitation screening proved to be very effective in both detecting larger systems and smaller or isolated systems. Regarding the GMI/DPR-CMB validation dataset, the screening performed well, with an accuracy of 0.95, POD of 0.80, FAR of 0.39 and bias of 1.34. When compared to the Goddard profiling algorithm (GPROF) the screening still had good performance, however with slightly smaller scores. It was observed that through the comparison maps with GPROF the NNIMBUS can detect agglomerates very similarly, however it does not detect the borders of the systems very well. This behavior might be associated with the precipitation thresholds that were configured with the training dataset (0.2 a 60 mm/h), which might be leading more stratiform regions of the systems to go undetected. The rainfall retrieval model also performed well when compared to the GMI/DPR-CMB observations, with an MAE of 4.19, standard deviation of 3.23 and RMSE of 5.59 for the validation dataset. Analyzing the rain rate classes, the retrieval tends to underestimate classes between 0.2 and 1 mm/h, overestimate classes between 1 and 10 mm/h and underestimate classes greater than 10 mm/h. These features can be associated with the input dataset distribution, as well as with the criteria applied in data cleaning process.
id INPE_8d17bb74d826a22b74036fcdeaecba76
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m21c/2019/05.14.19.52.10-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisDevelopment of a passive microwave-based satellite precipitation estimation algorithm for BrazilDesenvolvimento de um algoritmo de estimativa de precipitação baseada em microondas passivo para o Brasil2019-05-20Daniel Alejandro VilaLuiz Augusto Toledo MachadoGiulia PanegrossiEnrique Vieira MattosLia Martins Costa do AmaralInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em MeteorologiaINPEBRSatelliteprecipitationartificial neural networkspassive microwaveGPM Microwave Imager (GMI)observational database. precipitação por satéliteredes neurais artificaismicroondas passivoGMIDPRCMBbanco de dados observacionalIn order to develop a passive microwave-based satellite precipitation estimation algorithm optimized for Brazil, this work was divided in two parts. The first part consisted in extending the cloud-radiation database used as a priori information for the Cloud Dynamics and Radiation Database (CDRD) Bayesian algorithm in order to include the cloud resolving model simulations representative of brazilian rainfall regimes. Simulations of microphysical, dynamical and meteorological profiles were then generated using the University of Wisconsin - Nonhydrostatic Modeling System and the brightness temperature (TB) simulations were generated using the Radiative Transfer Equation Modeling System for the CHUVA (Amazon and Vale) golden cases and compared with observed TB. The results demonstrated that the simulations detected perturbations in the TB fields (in space and time) however in terms of the range of temperature values, the model did not reproduce the lowest values of TB that were present in the observations. The model also seemed to struggle with the riming process on graupel formation, providing small amounts of graupel content. These results demonstrated that the models needed adjustments to be able to describe the regional features of TB across a wide range of meteorological systems in Brazil. For these reasons, the second part of the work was developed by making use of an observational database from the sensors GPM Microwave Imager and Dualfrequency Precipitation Radar (GMI/DPR-CMB) in order to develop a screening of precipitation and rainfall retrieval algorithm over Brazil, based on artificial neural networks (ANN) and called Neural Network IMplementation of the Brazilian MUltilayer Perceptron for Screening and precipitation retrieval (NNIMBUS). The precipitation screening proved to be very effective in both detecting larger systems and smaller or isolated systems. Regarding the GMI/DPR-CMB validation dataset, the screening performed well, with an accuracy of 0.95, POD of 0.80, FAR of 0.39 and bias of 1.34. When compared to the Goddard profiling algorithm (GPROF) the screening still had good performance, however with slightly smaller scores. It was observed that through the comparison maps with GPROF the NNIMBUS can detect agglomerates very similarly, however it does not detect the borders of the systems very well. This behavior might be associated with the precipitation thresholds that were configured with the training dataset (0.2 a 60 mm/h), which might be leading more stratiform regions of the systems to go undetected. The rainfall retrieval model also performed well when compared to the GMI/DPR-CMB observations, with an MAE of 4.19, standard deviation of 3.23 and RMSE of 5.59 for the validation dataset. Analyzing the rain rate classes, the retrieval tends to underestimate classes between 0.2 and 1 mm/h, overestimate classes between 1 and 10 mm/h and underestimate classes greater than 10 mm/h. These features can be associated with the input dataset distribution, as well as with the criteria applied in data cleaning process.Com objetivo de desenvolver um algoritmo de estimativa de precipitação por satélite baseado em microondas passivo otimizado para o Brasil, este trabalho foi dividido em duas partes. A primeira parte consistiu em estender o banco de dados de radiação de nuvens usado como informação a priori para o algoritmo Bayesiano Cloud Dynamics and Radiation Database (CDRD), a fim de incluir as simulações representativas dos regimes de precipitação do Brazil. Simulações dos perfis microfísicos, dinâmicos e meteorológicos foram geradas usando o University of Wisconsin Nonhydrostatic Modeling System e as simulações de temperatura de brilho (TB) foram geradas usando o Radiative Transfer Equation Modeling System para os sitemas precipitantes observados durante o projeto CHUVA (campanhas do Vale do Paraíba e Manaus). Os resultados demonstraram que as simulações detectaram as perturbações nos campos de TB (no espaço e no tempo), porém em termos do intervalos de TB, o modelo não reproduziu os menores valores de TB presentes nas observações. O modelo aparentou ter dificuldade em gerar o processo de formação de graupel, gerando pequenas valores de conteúdo de graupel. Esses resultados demonstraram que os modelos precisavam de ajustes para poder descrever as características regionais da TB para ampla gama de sistemas meteorológicos no Brasil. Por estas razões, a segunda parte do trabalho consistiu no desenvolvimento de um algoritmo de redes neurais artificais (denominado Neural Network Implementation of the Brazilian Multilayer Perceptron for Screening and precipitation retrieval (NNIMBUS), tanto para detecção da área precipitante screening como para recuperação da intensidade da precipitação, utilizando um banco de dados observacionais provindos dos sensores GPM Microwave Imager e Dual-frequency Precipitation Radar (GMI/DPR-CMB). A detecção de precipitação (screening) provou ser muito eficaz na detecção de sistemas maiores e sistemas menores ou isolados. Em relação ao conjunto de dados de validação do GMI/DPR-CMB, o algoritmo apresentou bom desempenho, com acurácia de 0,95, POD de 0,80, FAR de 0,39 e viés de 1,34. Quando comparado ao algoritmo Goddard profiling algorithm (GPROF), a detecção de precipitação ainda apresentava bom desempenho, porém com estatísticas ligeiramente menores. Através dos mapas de comparação com o GPROF, foi possível perceber que o NNIMBUS consegue detectar os aglomerados de forma muito semelhante, porém não detecta muito bem as bordas dos sistemas. Esse comportamento pode estar associado aos limiares de precipitação que foram configurados com o conjunto de dados de treinamento (0,2 a 60 mm/h), o que pode estar levando a que regiões mais estratiformes dos sistemas não sejam detectadas. O modelo de recuperação da precipitação também teve um bom desempenho quando comparado com as observações GMI/DPR-CMB, com um MAE de 4,19, desvio padrão de 3,23 e RMSE de 5,59 para o conjunto de dados de validação. Analisando as classes de taxa de chuva, a recuperação tende a subestimar as classes entre 0,2 e 1 mm/h, superestimar as classes entre 1 e 10 mm/h e subestimar as classes acima de 10 mm/h. Essas características podem estar associadass à distribuição do conjunto de dados de entrada, bem como aos critérios aplicados no processo de limpeza de dados.http://urlib.net/sid.inpe.br/mtc-m21c/2019/05.14.19.52info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:56:02Zoai:urlib.net:sid.inpe.br/mtc-m21c/2019/05.14.19.52.10-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:56:03.911Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.en.fl_str_mv Development of a passive microwave-based satellite precipitation estimation algorithm for Brazil
dc.title.alternative.pt.fl_str_mv Desenvolvimento de um algoritmo de estimativa de precipitação baseada em microondas passivo para o Brasil
title Development of a passive microwave-based satellite precipitation estimation algorithm for Brazil
spellingShingle Development of a passive microwave-based satellite precipitation estimation algorithm for Brazil
Lia Martins Costa do Amaral
title_short Development of a passive microwave-based satellite precipitation estimation algorithm for Brazil
title_full Development of a passive microwave-based satellite precipitation estimation algorithm for Brazil
title_fullStr Development of a passive microwave-based satellite precipitation estimation algorithm for Brazil
title_full_unstemmed Development of a passive microwave-based satellite precipitation estimation algorithm for Brazil
title_sort Development of a passive microwave-based satellite precipitation estimation algorithm for Brazil
author Lia Martins Costa do Amaral
author_facet Lia Martins Costa do Amaral
author_role author
dc.contributor.advisor1.fl_str_mv Daniel Alejandro Vila
dc.contributor.referee1.fl_str_mv Luiz Augusto Toledo Machado
dc.contributor.referee2.fl_str_mv Giulia Panegrossi
dc.contributor.referee3.fl_str_mv Enrique Vieira Mattos
dc.contributor.author.fl_str_mv Lia Martins Costa do Amaral
contributor_str_mv Daniel Alejandro Vila
Luiz Augusto Toledo Machado
Giulia Panegrossi
Enrique Vieira Mattos
dc.description.abstract.por.fl_txt_mv In order to develop a passive microwave-based satellite precipitation estimation algorithm optimized for Brazil, this work was divided in two parts. The first part consisted in extending the cloud-radiation database used as a priori information for the Cloud Dynamics and Radiation Database (CDRD) Bayesian algorithm in order to include the cloud resolving model simulations representative of brazilian rainfall regimes. Simulations of microphysical, dynamical and meteorological profiles were then generated using the University of Wisconsin - Nonhydrostatic Modeling System and the brightness temperature (TB) simulations were generated using the Radiative Transfer Equation Modeling System for the CHUVA (Amazon and Vale) golden cases and compared with observed TB. The results demonstrated that the simulations detected perturbations in the TB fields (in space and time) however in terms of the range of temperature values, the model did not reproduce the lowest values of TB that were present in the observations. The model also seemed to struggle with the riming process on graupel formation, providing small amounts of graupel content. These results demonstrated that the models needed adjustments to be able to describe the regional features of TB across a wide range of meteorological systems in Brazil. For these reasons, the second part of the work was developed by making use of an observational database from the sensors GPM Microwave Imager and Dualfrequency Precipitation Radar (GMI/DPR-CMB) in order to develop a screening of precipitation and rainfall retrieval algorithm over Brazil, based on artificial neural networks (ANN) and called Neural Network IMplementation of the Brazilian MUltilayer Perceptron for Screening and precipitation retrieval (NNIMBUS). The precipitation screening proved to be very effective in both detecting larger systems and smaller or isolated systems. Regarding the GMI/DPR-CMB validation dataset, the screening performed well, with an accuracy of 0.95, POD of 0.80, FAR of 0.39 and bias of 1.34. When compared to the Goddard profiling algorithm (GPROF) the screening still had good performance, however with slightly smaller scores. It was observed that through the comparison maps with GPROF the NNIMBUS can detect agglomerates very similarly, however it does not detect the borders of the systems very well. This behavior might be associated with the precipitation thresholds that were configured with the training dataset (0.2 a 60 mm/h), which might be leading more stratiform regions of the systems to go undetected. The rainfall retrieval model also performed well when compared to the GMI/DPR-CMB observations, with an MAE of 4.19, standard deviation of 3.23 and RMSE of 5.59 for the validation dataset. Analyzing the rain rate classes, the retrieval tends to underestimate classes between 0.2 and 1 mm/h, overestimate classes between 1 and 10 mm/h and underestimate classes greater than 10 mm/h. These features can be associated with the input dataset distribution, as well as with the criteria applied in data cleaning process.
Com objetivo de desenvolver um algoritmo de estimativa de precipitação por satélite baseado em microondas passivo otimizado para o Brasil, este trabalho foi dividido em duas partes. A primeira parte consistiu em estender o banco de dados de radiação de nuvens usado como informação a priori para o algoritmo Bayesiano Cloud Dynamics and Radiation Database (CDRD), a fim de incluir as simulações representativas dos regimes de precipitação do Brazil. Simulações dos perfis microfísicos, dinâmicos e meteorológicos foram geradas usando o University of Wisconsin Nonhydrostatic Modeling System e as simulações de temperatura de brilho (TB) foram geradas usando o Radiative Transfer Equation Modeling System para os sitemas precipitantes observados durante o projeto CHUVA (campanhas do Vale do Paraíba e Manaus). Os resultados demonstraram que as simulações detectaram as perturbações nos campos de TB (no espaço e no tempo), porém em termos do intervalos de TB, o modelo não reproduziu os menores valores de TB presentes nas observações. O modelo aparentou ter dificuldade em gerar o processo de formação de graupel, gerando pequenas valores de conteúdo de graupel. Esses resultados demonstraram que os modelos precisavam de ajustes para poder descrever as características regionais da TB para ampla gama de sistemas meteorológicos no Brasil. Por estas razões, a segunda parte do trabalho consistiu no desenvolvimento de um algoritmo de redes neurais artificais (denominado Neural Network Implementation of the Brazilian Multilayer Perceptron for Screening and precipitation retrieval (NNIMBUS), tanto para detecção da área precipitante screening como para recuperação da intensidade da precipitação, utilizando um banco de dados observacionais provindos dos sensores GPM Microwave Imager e Dual-frequency Precipitation Radar (GMI/DPR-CMB). A detecção de precipitação (screening) provou ser muito eficaz na detecção de sistemas maiores e sistemas menores ou isolados. Em relação ao conjunto de dados de validação do GMI/DPR-CMB, o algoritmo apresentou bom desempenho, com acurácia de 0,95, POD de 0,80, FAR de 0,39 e viés de 1,34. Quando comparado ao algoritmo Goddard profiling algorithm (GPROF), a detecção de precipitação ainda apresentava bom desempenho, porém com estatísticas ligeiramente menores. Através dos mapas de comparação com o GPROF, foi possível perceber que o NNIMBUS consegue detectar os aglomerados de forma muito semelhante, porém não detecta muito bem as bordas dos sistemas. Esse comportamento pode estar associado aos limiares de precipitação que foram configurados com o conjunto de dados de treinamento (0,2 a 60 mm/h), o que pode estar levando a que regiões mais estratiformes dos sistemas não sejam detectadas. O modelo de recuperação da precipitação também teve um bom desempenho quando comparado com as observações GMI/DPR-CMB, com um MAE de 4,19, desvio padrão de 3,23 e RMSE de 5,59 para o conjunto de dados de validação. Analisando as classes de taxa de chuva, a recuperação tende a subestimar as classes entre 0,2 e 1 mm/h, superestimar as classes entre 1 e 10 mm/h e subestimar as classes acima de 10 mm/h. Essas características podem estar associadass à distribuição do conjunto de dados de entrada, bem como aos critérios aplicados no processo de limpeza de dados.
description In order to develop a passive microwave-based satellite precipitation estimation algorithm optimized for Brazil, this work was divided in two parts. The first part consisted in extending the cloud-radiation database used as a priori information for the Cloud Dynamics and Radiation Database (CDRD) Bayesian algorithm in order to include the cloud resolving model simulations representative of brazilian rainfall regimes. Simulations of microphysical, dynamical and meteorological profiles were then generated using the University of Wisconsin - Nonhydrostatic Modeling System and the brightness temperature (TB) simulations were generated using the Radiative Transfer Equation Modeling System for the CHUVA (Amazon and Vale) golden cases and compared with observed TB. The results demonstrated that the simulations detected perturbations in the TB fields (in space and time) however in terms of the range of temperature values, the model did not reproduce the lowest values of TB that were present in the observations. The model also seemed to struggle with the riming process on graupel formation, providing small amounts of graupel content. These results demonstrated that the models needed adjustments to be able to describe the regional features of TB across a wide range of meteorological systems in Brazil. For these reasons, the second part of the work was developed by making use of an observational database from the sensors GPM Microwave Imager and Dualfrequency Precipitation Radar (GMI/DPR-CMB) in order to develop a screening of precipitation and rainfall retrieval algorithm over Brazil, based on artificial neural networks (ANN) and called Neural Network IMplementation of the Brazilian MUltilayer Perceptron for Screening and precipitation retrieval (NNIMBUS). The precipitation screening proved to be very effective in both detecting larger systems and smaller or isolated systems. Regarding the GMI/DPR-CMB validation dataset, the screening performed well, with an accuracy of 0.95, POD of 0.80, FAR of 0.39 and bias of 1.34. When compared to the Goddard profiling algorithm (GPROF) the screening still had good performance, however with slightly smaller scores. It was observed that through the comparison maps with GPROF the NNIMBUS can detect agglomerates very similarly, however it does not detect the borders of the systems very well. This behavior might be associated with the precipitation thresholds that were configured with the training dataset (0.2 a 60 mm/h), which might be leading more stratiform regions of the systems to go undetected. The rainfall retrieval model also performed well when compared to the GMI/DPR-CMB observations, with an MAE of 4.19, standard deviation of 3.23 and RMSE of 5.59 for the validation dataset. Analyzing the rain rate classes, the retrieval tends to underestimate classes between 0.2 and 1 mm/h, overestimate classes between 1 and 10 mm/h and underestimate classes greater than 10 mm/h. These features can be associated with the input dataset distribution, as well as with the criteria applied in data cleaning process.
publishDate 2019
dc.date.issued.fl_str_mv 2019-05-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m21c/2019/05.14.19.52
url http://urlib.net/sid.inpe.br/mtc-m21c/2019/05.14.19.52
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Meteorologia
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Meteorologia
contributor_advisor1_txtF_mv Daniel Alejandro Vila
_version_ 1706805043192135680