Exportação concluída — 

Derivada topológica bayesiana no problema inverso da condutividade

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Oliveira, Luis Jonatha Rodrigues
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
BR
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/136
Resumo: O problema inverso da condutividade consiste em determinar a distribuição de condutividade térmica de um corpo a partir de medidas tomadas na fronteira. Neste trabalho, objetiva-se reconstruir um conjunto de inclusões com coeficiente de condutividade térmica distinto do meio, submetendo o corpo a excitações térmicas e medindo a correspondente distribuição de temperatura sobre sua fronteira. Como o problema inverso da condutividade é sobredeterminado, a ideia é reescrevê-lo na forma de um problema de otimização. Em particular, objetiva-se minimizar um funcional de forma baseado no critério de Kohn-Vogelius, que mede a diferença entre as soluções de dois problemas auxiliares. Um deles contém informação sobre a leitura e outro sobre a excitação, ambos definidos na fronteira do corpo. Sobre a solução do problema inverso, ambas as soluções dos problemas auxiliares coincidem. O critério de Kohn-Vogelius é então minimizado utilizando o conceito de derivada topológica, que mede a sensibilidade de um dado funcional quando uma perturbação infinitesimal singular é introduzida em um ponto arbitrário do domínio. Em seguida, o problema inverso é redefinido no contexto de inferência bayesiana, que consiste em codificar informações previamente conhecidas a partir de uma distribuição de probabilidade a priori a ser atualizada através do teorema de Bayes, a cada nova informação introduzida. Com a finalidade de se reduzir o custo computacional de métodos numéricos de amostragem, comumente utilizados neste tipo de abordagem, a derivada topológica será utilizada como um indicador de probabilidade na construção da função de verossimilhança para se obter uma distribuição de probabilidade do conjunto de inclusões, o que conduz a um algoritmo de reconstrução probabilístico baseado no conceito de derivada topológica bayesiana, introduzido pela primeira vez nesse trabalho. Finalmente, são apresentados alguns experimentos numéricos.
id LNCC_8e8a0522774daaf114a53bfa9feeda61
oai_identifier_str oai:tede-server.lncc.br:tede/136
network_acronym_str LNCC
network_name_str Biblioteca Digital de Teses e Dissertações do LNCC
repository_id_str
spelling Derivada topológica bayesiana no problema inverso da condutividadeBayesian toological derivative for the conductivity inverse problemEquações diferenciais parciaisDifferential equations, Partial.CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAISO problema inverso da condutividade consiste em determinar a distribuição de condutividade térmica de um corpo a partir de medidas tomadas na fronteira. Neste trabalho, objetiva-se reconstruir um conjunto de inclusões com coeficiente de condutividade térmica distinto do meio, submetendo o corpo a excitações térmicas e medindo a correspondente distribuição de temperatura sobre sua fronteira. Como o problema inverso da condutividade é sobredeterminado, a ideia é reescrevê-lo na forma de um problema de otimização. Em particular, objetiva-se minimizar um funcional de forma baseado no critério de Kohn-Vogelius, que mede a diferença entre as soluções de dois problemas auxiliares. Um deles contém informação sobre a leitura e outro sobre a excitação, ambos definidos na fronteira do corpo. Sobre a solução do problema inverso, ambas as soluções dos problemas auxiliares coincidem. O critério de Kohn-Vogelius é então minimizado utilizando o conceito de derivada topológica, que mede a sensibilidade de um dado funcional quando uma perturbação infinitesimal singular é introduzida em um ponto arbitrário do domínio. Em seguida, o problema inverso é redefinido no contexto de inferência bayesiana, que consiste em codificar informações previamente conhecidas a partir de uma distribuição de probabilidade a priori a ser atualizada através do teorema de Bayes, a cada nova informação introduzida. Com a finalidade de se reduzir o custo computacional de métodos numéricos de amostragem, comumente utilizados neste tipo de abordagem, a derivada topológica será utilizada como um indicador de probabilidade na construção da função de verossimilhança para se obter uma distribuição de probabilidade do conjunto de inclusões, o que conduz a um algoritmo de reconstrução probabilístico baseado no conceito de derivada topológica bayesiana, introduzido pela primeira vez nesse trabalho. Finalmente, são apresentados alguns experimentos numéricos.The inverse conductivity problem consists in determining the thermal conductivity distribution of a body from boundary measurements. In this work, we want to reconstruct a set of inclusions with a different thermal conductivity from the medium by subjecting the body through a thermal excitations and taking temperature measurements on the boundary. Since the inverse conductivity problem is overdetermined, the idea is to rewrite it in the form of an optimization problem. In particular, we minimize a shape functional based on the Kohn-Vogelius criterion that measures the misfit between two auxiliaries problems. One of them contains information on the boundary measurement while the other one contains information on the boundary excitation. Over the solution to the inverse problem, both solutions to the auxiliaries problems coincide. The Kohn-Vogelius criterion is then minimized by using the so-called topological derivative concept. This derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. Next, the inverse problem is redefined in the context of Bayesian inference, that consists in codifying a previously known information from a priori probability distribution to be updated through the Bayes Theorem once a new information is introduced. In order to reduce the computational cost of sample numerical methods commonly used in this type of approach, the topological derivative is used as a probability indicator in the construction of the likelihood function to obtain a probability distribution of the set of inclusions, which leads to a probabilistic reconstruction algorithm based on the Bayesian topological derivative concept introduced in this work for the first time. Finally, some numerical experiments are presented.Laboratório Nacional de Computação CientíficaServiço de Análise e Apoio a Formação de Recursos HumanosBRLNCCPrograma de Pós-Graduação em Modelagem ComputacionalNovotny, Antonio AndréCPF:84167530910http://lattes.cnpq.br/8102993969523532Murad, Marcio ArabCPF:83046607768http://lattes.cnpq.br/1392335366884977Duda, Fernando Pereirahttp://lattes.cnpq.br/3100004456264467Faria, Jairo Rocha deCPF:01168989760http:/lattes.cnpq.br/0796077542730627Oliveira, Luis Jonatha Rodrigues2015-03-04T18:57:33Z2015-02-232013-03-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://tede.lncc.br/handle/tede/136porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCC2018-07-04T12:59:45Zoai:tede-server.lncc.br:tede/136Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2018-07-04T12:59:45Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false
dc.title.none.fl_str_mv Derivada topológica bayesiana no problema inverso da condutividade
Bayesian toological derivative for the conductivity inverse problem
title Derivada topológica bayesiana no problema inverso da condutividade
spellingShingle Derivada topológica bayesiana no problema inverso da condutividade
Oliveira, Luis Jonatha Rodrigues
Equações diferenciais parciais
Differential equations, Partial.
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS
title_short Derivada topológica bayesiana no problema inverso da condutividade
title_full Derivada topológica bayesiana no problema inverso da condutividade
title_fullStr Derivada topológica bayesiana no problema inverso da condutividade
title_full_unstemmed Derivada topológica bayesiana no problema inverso da condutividade
title_sort Derivada topológica bayesiana no problema inverso da condutividade
author Oliveira, Luis Jonatha Rodrigues
author_facet Oliveira, Luis Jonatha Rodrigues
author_role author
dc.contributor.none.fl_str_mv Novotny, Antonio André
CPF:84167530910
http://lattes.cnpq.br/8102993969523532
Murad, Marcio Arab
CPF:83046607768
http://lattes.cnpq.br/1392335366884977
Duda, Fernando Pereira
http://lattes.cnpq.br/3100004456264467
Faria, Jairo Rocha de
CPF:01168989760
http:/lattes.cnpq.br/0796077542730627
dc.contributor.author.fl_str_mv Oliveira, Luis Jonatha Rodrigues
dc.subject.por.fl_str_mv Equações diferenciais parciais
Differential equations, Partial.
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS
topic Equações diferenciais parciais
Differential equations, Partial.
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS
description O problema inverso da condutividade consiste em determinar a distribuição de condutividade térmica de um corpo a partir de medidas tomadas na fronteira. Neste trabalho, objetiva-se reconstruir um conjunto de inclusões com coeficiente de condutividade térmica distinto do meio, submetendo o corpo a excitações térmicas e medindo a correspondente distribuição de temperatura sobre sua fronteira. Como o problema inverso da condutividade é sobredeterminado, a ideia é reescrevê-lo na forma de um problema de otimização. Em particular, objetiva-se minimizar um funcional de forma baseado no critério de Kohn-Vogelius, que mede a diferença entre as soluções de dois problemas auxiliares. Um deles contém informação sobre a leitura e outro sobre a excitação, ambos definidos na fronteira do corpo. Sobre a solução do problema inverso, ambas as soluções dos problemas auxiliares coincidem. O critério de Kohn-Vogelius é então minimizado utilizando o conceito de derivada topológica, que mede a sensibilidade de um dado funcional quando uma perturbação infinitesimal singular é introduzida em um ponto arbitrário do domínio. Em seguida, o problema inverso é redefinido no contexto de inferência bayesiana, que consiste em codificar informações previamente conhecidas a partir de uma distribuição de probabilidade a priori a ser atualizada através do teorema de Bayes, a cada nova informação introduzida. Com a finalidade de se reduzir o custo computacional de métodos numéricos de amostragem, comumente utilizados neste tipo de abordagem, a derivada topológica será utilizada como um indicador de probabilidade na construção da função de verossimilhança para se obter uma distribuição de probabilidade do conjunto de inclusões, o que conduz a um algoritmo de reconstrução probabilístico baseado no conceito de derivada topológica bayesiana, introduzido pela primeira vez nesse trabalho. Finalmente, são apresentados alguns experimentos numéricos.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-21
2015-03-04T18:57:33Z
2015-02-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://tede.lncc.br/handle/tede/136
url https://tede.lncc.br/handle/tede/136
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
BR
LNCC
Programa de Pós-Graduação em Modelagem Computacional
publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
BR
LNCC
Programa de Pós-Graduação em Modelagem Computacional
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do LNCC
instname:Laboratório Nacional de Computação Científica (LNCC)
instacron:LNCC
instname_str Laboratório Nacional de Computação Científica (LNCC)
instacron_str LNCC
institution LNCC
reponame_str Biblioteca Digital de Teses e Dissertações do LNCC
collection Biblioteca Digital de Teses e Dissertações do LNCC
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)
repository.mail.fl_str_mv library@lncc.br||library@lncc.br
_version_ 1832738026963337216