Klein-Gordon models with non-effective time-dependent potential
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/7453 |
Resumo: | In this thesis we study the asymptotic properties for the solution of the Cauchy problem for the Klein-Gordon equation with non-effective time-dependent potential. The main goal was define a suitable energy related to the Cauchy problem and derive decay estimates for such energy. Strichartz’ estimates and results of scattering and modified scattering was established. The C m theory and the stabilization condition was applied to treat the case where the coefficient of the potential term has very fast oscillations. Moreover, we consider a semi-linear wave model scale-invariant time- dependent with mass and dissipation, in this step we used linear estimates related with the semi-linear model to prove global existence (in time) of energy solutions for small data and we show a blow-up result for a suitable choice of the coefficients. |
| id |
SCAR_b3cd3381f3fc0549ac9d959f80c5d34d |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/7453 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Nascimento, Wanderley Nunes doKapp, Rafael Augusto dos Santoshttp://lattes.cnpq.br/2872257628868649Ebert, Marcelo Rempelhttp://lattes.cnpq.br/2266906291626715http://lattes.cnpq.br/615026358860838968eaa9c7-df06-4fd0-8a72-c97c72b388522016-09-26T20:35:40Z2016-09-26T20:35:40Z2016-02-19NASCIMENTO, Wanderley Nunes do. Klein-Gordon models with non-effective time-dependent potential. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7453.https://repositorio.ufscar.br/handle/20.500.14289/7453In this thesis we study the asymptotic properties for the solution of the Cauchy problem for the Klein-Gordon equation with non-effective time-dependent potential. The main goal was define a suitable energy related to the Cauchy problem and derive decay estimates for such energy. Strichartz’ estimates and results of scattering and modified scattering was established. The C m theory and the stabilization condition was applied to treat the case where the coefficient of the potential term has very fast oscillations. Moreover, we consider a semi-linear wave model scale-invariant time- dependent with mass and dissipation, in this step we used linear estimates related with the semi-linear model to prove global existence (in time) of energy solutions for small data and we show a blow-up result for a suitable choice of the coefficients.Nesta tese estudamos as propriedades assintóticas para a solução do problema de Cauchy para a equação de Klein-Gordon com potencial não efetivo dependente do tempo. O principal objetivo foi definir uma energia adequada relacionada ao problema de Cauchy e derivar estimativas para tal energia. Estimativas de Strichartz e resultados de scatering e scatering modificados também foram estabelecidos. A teoria C m e a condição de estabilização foram aplicados para tratar o caso em que o coeficiente da massa oscila muito rápido. Além disso, consideramos um mod- elo de onda semi-linear scale-invariante com massa e dissipação dependentes do tempo, nesta etapa usamos as estimativas lineares de tal modelo para provar ex- istência global (no tempo) de solução de energia para dados iniciais suficientemente pequenos e demonstramos um resultado de blow-up para uma escolha adequada dos coeficientes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarKlein-Gordon time-dependent equationWKB AnalysisStrichartz estimatesSemi-linear wave equationPower non-linearityCIENCIAS EXATAS E DA TERRA::MATEMATICAKlein-Gordon models with non-effective time-dependent potentialinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOnline6006000cbfefca-a9d2-4ce0-a7aa-b2dad98a4acbinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALTeseWNN.pdfTeseWNN.pdfapplication/pdf1247691https://repositorio.ufscar.br/bitstreams/7669e8a3-b47d-4060-89f0-5995b6db65e4/download63f743255181169a9bb4ca1dfd2312c2MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/cccafc5f-4aea-4f66-a548-418b0b5e4a07/downloadae0398b6f8b235e40ad82cba6c50031dMD52falseAnonymousREADTEXTTeseWNN.pdf.txtTeseWNN.pdf.txtExtracted texttext/plain331408https://repositorio.ufscar.br/bitstreams/141032ed-1e04-47c1-bbfd-f75711321385/download4ab03b5b7c36329c4d7c4a4411965ddaMD55falseAnonymousREADTHUMBNAILTeseWNN.pdf.jpgTeseWNN.pdf.jpgIM Thumbnailimage/jpeg4460https://repositorio.ufscar.br/bitstreams/caa409c5-6614-4ff8-9054-04b9213f3b67/download0b59f6b26e22555145b7aa73009e3f3aMD56falseAnonymousREAD20.500.14289/74532025-02-05 18:50:47.326Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/7453https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T21:50:47Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.eng.fl_str_mv |
Klein-Gordon models with non-effective time-dependent potential |
| title |
Klein-Gordon models with non-effective time-dependent potential |
| spellingShingle |
Klein-Gordon models with non-effective time-dependent potential Nascimento, Wanderley Nunes do Klein-Gordon time-dependent equation WKB Analysis Strichartz estimates Semi-linear wave equation Power non-linearity CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Klein-Gordon models with non-effective time-dependent potential |
| title_full |
Klein-Gordon models with non-effective time-dependent potential |
| title_fullStr |
Klein-Gordon models with non-effective time-dependent potential |
| title_full_unstemmed |
Klein-Gordon models with non-effective time-dependent potential |
| title_sort |
Klein-Gordon models with non-effective time-dependent potential |
| author |
Nascimento, Wanderley Nunes do |
| author_facet |
Nascimento, Wanderley Nunes do |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6150263588608389 |
| dc.contributor.author.fl_str_mv |
Nascimento, Wanderley Nunes do |
| dc.contributor.advisor1.fl_str_mv |
Kapp, Rafael Augusto dos Santos |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2872257628868649 |
| dc.contributor.advisor-co1.fl_str_mv |
Ebert, Marcelo Rempel |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/2266906291626715 |
| dc.contributor.authorID.fl_str_mv |
68eaa9c7-df06-4fd0-8a72-c97c72b38852 |
| contributor_str_mv |
Kapp, Rafael Augusto dos Santos Ebert, Marcelo Rempel |
| dc.subject.eng.fl_str_mv |
Klein-Gordon time-dependent equation WKB Analysis Strichartz estimates Semi-linear wave equation Power non-linearity |
| topic |
Klein-Gordon time-dependent equation WKB Analysis Strichartz estimates Semi-linear wave equation Power non-linearity CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
In this thesis we study the asymptotic properties for the solution of the Cauchy problem for the Klein-Gordon equation with non-effective time-dependent potential. The main goal was define a suitable energy related to the Cauchy problem and derive decay estimates for such energy. Strichartz’ estimates and results of scattering and modified scattering was established. The C m theory and the stabilization condition was applied to treat the case where the coefficient of the potential term has very fast oscillations. Moreover, we consider a semi-linear wave model scale-invariant time- dependent with mass and dissipation, in this step we used linear estimates related with the semi-linear model to prove global existence (in time) of energy solutions for small data and we show a blow-up result for a suitable choice of the coefficients. |
| publishDate |
2016 |
| dc.date.accessioned.fl_str_mv |
2016-09-26T20:35:40Z |
| dc.date.available.fl_str_mv |
2016-09-26T20:35:40Z |
| dc.date.issued.fl_str_mv |
2016-02-19 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
NASCIMENTO, Wanderley Nunes do. Klein-Gordon models with non-effective time-dependent potential. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7453. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/7453 |
| identifier_str_mv |
NASCIMENTO, Wanderley Nunes do. Klein-Gordon models with non-effective time-dependent potential. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/7453. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/7453 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
0cbfefca-a9d2-4ce0-a7aa-b2dad98a4acb |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/7669e8a3-b47d-4060-89f0-5995b6db65e4/download https://repositorio.ufscar.br/bitstreams/cccafc5f-4aea-4f66-a548-418b0b5e4a07/download https://repositorio.ufscar.br/bitstreams/141032ed-1e04-47c1-bbfd-f75711321385/download https://repositorio.ufscar.br/bitstreams/caa409c5-6614-4ff8-9054-04b9213f3b67/download |
| bitstream.checksum.fl_str_mv |
63f743255181169a9bb4ca1dfd2312c2 ae0398b6f8b235e40ad82cba6c50031d 4ab03b5b7c36329c4d7c4a4411965dda 0b59f6b26e22555145b7aa73009e3f3a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688789954527232 |