Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Pedro, Saulo Domingos de Souza
Orientador(a): Hruschka Júnior, Estevam Rafael lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/14502
Resumo: Internet and social Web made possible the acquisition of information to feed a growing number of Machine Learning applications and, in addition, brought light to the use of crowdsourcing approaches, commonly applied to problems that are easy for humans but difficult for computers to solve, building the crowd-powered systems. In this work, we consider the issue of semantic drift in a bootstrap learning algorithm and propose the novel idea of a crowd-powered approach to diminish the effects of such issue. To put this idea to test we built a hybrid version of the Coupled Pattern Learner, a bootstrap learning algorithm that extract contextual patterns from an unstructured text, and SSCrowd, a component that allows conversation between learning systems and Web users, in an attempt to actively and autonomously look for human supervision by asking people to take part into the knowledge acquisition process, thus using the intelligence of the crowd to improve the learning capabilities of Coupled Pattern Learner. We take advantage of the ease that humans have to understand language in unstructured text, and we show the results of using a hybrid crowd-powered approach to diminish the effects of semantic drift.
id SCAR_c33d6dab421753a212b1bc830be0044f
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/14502
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Pedro, Saulo Domingos de SouzaHruschka Júnior, Estevam Rafaelhttp://lattes.cnpq.br/2097340857065853http://lattes.cnpq.br/49844139068187531a76caac-d109-4eed-bf1a-0761a1b1fb542021-07-03T11:56:19Z2021-07-03T11:56:19Z2019-08-21PEDRO, Saulo Domingos de Souza. Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14502.https://repositorio.ufscar.br/handle/20.500.14289/14502Internet and social Web made possible the acquisition of information to feed a growing number of Machine Learning applications and, in addition, brought light to the use of crowdsourcing approaches, commonly applied to problems that are easy for humans but difficult for computers to solve, building the crowd-powered systems. In this work, we consider the issue of semantic drift in a bootstrap learning algorithm and propose the novel idea of a crowd-powered approach to diminish the effects of such issue. To put this idea to test we built a hybrid version of the Coupled Pattern Learner, a bootstrap learning algorithm that extract contextual patterns from an unstructured text, and SSCrowd, a component that allows conversation between learning systems and Web users, in an attempt to actively and autonomously look for human supervision by asking people to take part into the knowledge acquisition process, thus using the intelligence of the crowd to improve the learning capabilities of Coupled Pattern Learner. We take advantage of the ease that humans have to understand language in unstructured text, and we show the results of using a hybrid crowd-powered approach to diminish the effects of semantic drift.A Internet e a Web social possibilitaram a aquisição de informações para alimentar um número crescente de aplicações de Machine Learning e, além disso, trouxeram luz ao uso de abordagens de crowdsourcing, comumente aplicadas a problemas fáceis para humanos, mas difíceis de serem resolvidos por computadores, os crowd-powered systems. Neste trabalho, consideramos a questão do desvio semântico em um algoritmo de aprendizado de bootstrap e propomos a nova idéia de uma abordagem baseada em crowdsourcing para diminuir os efeitos de tal questão. Para testar essa idéia, criamos uma versão híbrida do Coupled Pattern Learner, um algoritmo de bootstrap learning que extrai padrões contextuais de um texto não estruturado e o SSCrowd, um componente que permite a conversação entre sistemas de aprendizado e usuários da Web, na tentativa de ativamente e autonomamente procurar por supervisão humana, solicitando às pessoas que participem do processo de aquisição de conhecimento, usando assim a inteligência da multidão para melhorar as capacidades de aprendizado do Coupled Pattern Learner. Aproveitamos a facilidade que os humanos têm para entender a linguagem em textos não estruturados e mostramos os resultados do uso de uma abordagem híbrida de multidão para diminuir os efeitos do desvio semântico.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 88881.131984/2016-01engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSemantic driftBootstrap learningCrowd-powered systemsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOConversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithmsConversing learning como uma abordagem baseada em colaboração coletiva para diminuir os efeitos de desvio semântico em algoritmos de bootstrap learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6c142165-1935-4e21-8c88-f27f8c42b0c1reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALSauloPedro.pdfSauloPedro.pdfDocumento da tese com a ordem de folha de rosto e folha de aprovação trocadasapplication/pdf1481774https://repositorio.ufscar.br/bitstreams/9a52cac2-37e0-46bd-9746-588845d13a7c/download625e23deaad6aa2777ead7e8526dcf5cMD57trueAnonymousREADcarta_comprovante.pdfcarta_comprovante.pdfCarta comprovante assinada pelo orientadorapplication/pdf126393https://repositorio.ufscar.br/bitstreams/0a984c67-330f-46ab-a7e6-6c3274f4ca76/download0683fc409308a5e872832613d2ffb412MD54falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/51228560-1cd9-4d9a-9123-a67e1122ac13/downloade39d27027a6cc9cb039ad269a5db8e34MD58falseAnonymousREADTEXTSauloPedro.pdf.txtSauloPedro.pdf.txtExtracted texttext/plain97177https://repositorio.ufscar.br/bitstreams/6140f573-9386-4b61-9ff5-13837c4336ad/download600faddd1581330fab753e5261aedafaMD513falseAnonymousREADcarta_comprovante.pdf.txtcarta_comprovante.pdf.txtExtracted texttext/plain1420https://repositorio.ufscar.br/bitstreams/a2ee7133-60ee-4f94-81e0-a741eab1282e/download54aae0f4d146120fc3cf86a4f2707ea3MD515falseAnonymousREADTHUMBNAILSauloPedro.pdf.jpgSauloPedro.pdf.jpgIM Thumbnailimage/jpeg10490https://repositorio.ufscar.br/bitstreams/6975e925-a3ac-4078-9416-a5f43768f5a6/download69256650f683d9ea0b6ee2b9772c7eebMD514falseAnonymousREADcarta_comprovante.pdf.jpgcarta_comprovante.pdf.jpgIM Thumbnailimage/jpeg11526https://repositorio.ufscar.br/bitstreams/63d0c3e4-6fba-45c2-87fa-ffa239dcc59c/downloadffe9a1c410c461b9b322341b33c20dc4MD516falseAnonymousREAD20.500.14289/145022025-02-05 19:54:30.977http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/14502https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:54:30Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms
dc.title.alternative.por.fl_str_mv Conversing learning como uma abordagem baseada em colaboração coletiva para diminuir os efeitos de desvio semântico em algoritmos de bootstrap learning
title Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms
spellingShingle Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms
Pedro, Saulo Domingos de Souza
Semantic drift
Bootstrap learning
Crowd-powered systems
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms
title_full Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms
title_fullStr Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms
title_full_unstemmed Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms
title_sort Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms
author Pedro, Saulo Domingos de Souza
author_facet Pedro, Saulo Domingos de Souza
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/4984413906818753
dc.contributor.author.fl_str_mv Pedro, Saulo Domingos de Souza
dc.contributor.advisor1.fl_str_mv Hruschka Júnior, Estevam Rafael
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2097340857065853
dc.contributor.authorID.fl_str_mv 1a76caac-d109-4eed-bf1a-0761a1b1fb54
contributor_str_mv Hruschka Júnior, Estevam Rafael
dc.subject.eng.fl_str_mv Semantic drift
Bootstrap learning
Crowd-powered systems
topic Semantic drift
Bootstrap learning
Crowd-powered systems
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description Internet and social Web made possible the acquisition of information to feed a growing number of Machine Learning applications and, in addition, brought light to the use of crowdsourcing approaches, commonly applied to problems that are easy for humans but difficult for computers to solve, building the crowd-powered systems. In this work, we consider the issue of semantic drift in a bootstrap learning algorithm and propose the novel idea of a crowd-powered approach to diminish the effects of such issue. To put this idea to test we built a hybrid version of the Coupled Pattern Learner, a bootstrap learning algorithm that extract contextual patterns from an unstructured text, and SSCrowd, a component that allows conversation between learning systems and Web users, in an attempt to actively and autonomously look for human supervision by asking people to take part into the knowledge acquisition process, thus using the intelligence of the crowd to improve the learning capabilities of Coupled Pattern Learner. We take advantage of the ease that humans have to understand language in unstructured text, and we show the results of using a hybrid crowd-powered approach to diminish the effects of semantic drift.
publishDate 2019
dc.date.issued.fl_str_mv 2019-08-21
dc.date.accessioned.fl_str_mv 2021-07-03T11:56:19Z
dc.date.available.fl_str_mv 2021-07-03T11:56:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEDRO, Saulo Domingos de Souza. Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14502.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/14502
identifier_str_mv PEDRO, Saulo Domingos de Souza. Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14502.
url https://repositorio.ufscar.br/handle/20.500.14289/14502
dc.language.iso.fl_str_mv eng
language eng
dc.relation.authority.fl_str_mv 6c142165-1935-4e21-8c88-f27f8c42b0c1
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/9a52cac2-37e0-46bd-9746-588845d13a7c/download
https://repositorio.ufscar.br/bitstreams/0a984c67-330f-46ab-a7e6-6c3274f4ca76/download
https://repositorio.ufscar.br/bitstreams/51228560-1cd9-4d9a-9123-a67e1122ac13/download
https://repositorio.ufscar.br/bitstreams/6140f573-9386-4b61-9ff5-13837c4336ad/download
https://repositorio.ufscar.br/bitstreams/a2ee7133-60ee-4f94-81e0-a741eab1282e/download
https://repositorio.ufscar.br/bitstreams/6975e925-a3ac-4078-9416-a5f43768f5a6/download
https://repositorio.ufscar.br/bitstreams/63d0c3e4-6fba-45c2-87fa-ffa239dcc59c/download
bitstream.checksum.fl_str_mv 625e23deaad6aa2777ead7e8526dcf5c
0683fc409308a5e872832613d2ffb412
e39d27027a6cc9cb039ad269a5db8e34
600faddd1581330fab753e5261aedafa
54aae0f4d146120fc3cf86a4f2707ea3
69256650f683d9ea0b6ee2b9772c7eeb
ffe9a1c410c461b9b322341b33c20dc4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688903387381760