Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/14502 |
Resumo: | Internet and social Web made possible the acquisition of information to feed a growing number of Machine Learning applications and, in addition, brought light to the use of crowdsourcing approaches, commonly applied to problems that are easy for humans but difficult for computers to solve, building the crowd-powered systems. In this work, we consider the issue of semantic drift in a bootstrap learning algorithm and propose the novel idea of a crowd-powered approach to diminish the effects of such issue. To put this idea to test we built a hybrid version of the Coupled Pattern Learner, a bootstrap learning algorithm that extract contextual patterns from an unstructured text, and SSCrowd, a component that allows conversation between learning systems and Web users, in an attempt to actively and autonomously look for human supervision by asking people to take part into the knowledge acquisition process, thus using the intelligence of the crowd to improve the learning capabilities of Coupled Pattern Learner. We take advantage of the ease that humans have to understand language in unstructured text, and we show the results of using a hybrid crowd-powered approach to diminish the effects of semantic drift. |
| id |
SCAR_c33d6dab421753a212b1bc830be0044f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/14502 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Pedro, Saulo Domingos de SouzaHruschka Júnior, Estevam Rafaelhttp://lattes.cnpq.br/2097340857065853http://lattes.cnpq.br/49844139068187531a76caac-d109-4eed-bf1a-0761a1b1fb542021-07-03T11:56:19Z2021-07-03T11:56:19Z2019-08-21PEDRO, Saulo Domingos de Souza. Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14502.https://repositorio.ufscar.br/handle/20.500.14289/14502Internet and social Web made possible the acquisition of information to feed a growing number of Machine Learning applications and, in addition, brought light to the use of crowdsourcing approaches, commonly applied to problems that are easy for humans but difficult for computers to solve, building the crowd-powered systems. In this work, we consider the issue of semantic drift in a bootstrap learning algorithm and propose the novel idea of a crowd-powered approach to diminish the effects of such issue. To put this idea to test we built a hybrid version of the Coupled Pattern Learner, a bootstrap learning algorithm that extract contextual patterns from an unstructured text, and SSCrowd, a component that allows conversation between learning systems and Web users, in an attempt to actively and autonomously look for human supervision by asking people to take part into the knowledge acquisition process, thus using the intelligence of the crowd to improve the learning capabilities of Coupled Pattern Learner. We take advantage of the ease that humans have to understand language in unstructured text, and we show the results of using a hybrid crowd-powered approach to diminish the effects of semantic drift.A Internet e a Web social possibilitaram a aquisição de informações para alimentar um número crescente de aplicações de Machine Learning e, além disso, trouxeram luz ao uso de abordagens de crowdsourcing, comumente aplicadas a problemas fáceis para humanos, mas difíceis de serem resolvidos por computadores, os crowd-powered systems. Neste trabalho, consideramos a questão do desvio semântico em um algoritmo de aprendizado de bootstrap e propomos a nova idéia de uma abordagem baseada em crowdsourcing para diminuir os efeitos de tal questão. Para testar essa idéia, criamos uma versão híbrida do Coupled Pattern Learner, um algoritmo de bootstrap learning que extrai padrões contextuais de um texto não estruturado e o SSCrowd, um componente que permite a conversação entre sistemas de aprendizado e usuários da Web, na tentativa de ativamente e autonomamente procurar por supervisão humana, solicitando às pessoas que participem do processo de aquisição de conhecimento, usando assim a inteligência da multidão para melhorar as capacidades de aprendizado do Coupled Pattern Learner. Aproveitamos a facilidade que os humanos têm para entender a linguagem em textos não estruturados e mostramos os resultados do uso de uma abordagem híbrida de multidão para diminuir os efeitos do desvio semântico.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 88881.131984/2016-01engUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSemantic driftBootstrap learningCrowd-powered systemsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOConversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithmsConversing learning como uma abordagem baseada em colaboração coletiva para diminuir os efeitos de desvio semântico em algoritmos de bootstrap learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6c142165-1935-4e21-8c88-f27f8c42b0c1reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALSauloPedro.pdfSauloPedro.pdfDocumento da tese com a ordem de folha de rosto e folha de aprovação trocadasapplication/pdf1481774https://repositorio.ufscar.br/bitstreams/9a52cac2-37e0-46bd-9746-588845d13a7c/download625e23deaad6aa2777ead7e8526dcf5cMD57trueAnonymousREADcarta_comprovante.pdfcarta_comprovante.pdfCarta comprovante assinada pelo orientadorapplication/pdf126393https://repositorio.ufscar.br/bitstreams/0a984c67-330f-46ab-a7e6-6c3274f4ca76/download0683fc409308a5e872832613d2ffb412MD54falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/51228560-1cd9-4d9a-9123-a67e1122ac13/downloade39d27027a6cc9cb039ad269a5db8e34MD58falseAnonymousREADTEXTSauloPedro.pdf.txtSauloPedro.pdf.txtExtracted texttext/plain97177https://repositorio.ufscar.br/bitstreams/6140f573-9386-4b61-9ff5-13837c4336ad/download600faddd1581330fab753e5261aedafaMD513falseAnonymousREADcarta_comprovante.pdf.txtcarta_comprovante.pdf.txtExtracted texttext/plain1420https://repositorio.ufscar.br/bitstreams/a2ee7133-60ee-4f94-81e0-a741eab1282e/download54aae0f4d146120fc3cf86a4f2707ea3MD515falseAnonymousREADTHUMBNAILSauloPedro.pdf.jpgSauloPedro.pdf.jpgIM Thumbnailimage/jpeg10490https://repositorio.ufscar.br/bitstreams/6975e925-a3ac-4078-9416-a5f43768f5a6/download69256650f683d9ea0b6ee2b9772c7eebMD514falseAnonymousREADcarta_comprovante.pdf.jpgcarta_comprovante.pdf.jpgIM Thumbnailimage/jpeg11526https://repositorio.ufscar.br/bitstreams/63d0c3e4-6fba-45c2-87fa-ffa239dcc59c/downloadffe9a1c410c461b9b322341b33c20dc4MD516falseAnonymousREAD20.500.14289/145022025-02-05 19:54:30.977http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/14502https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:54:30Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms |
| dc.title.alternative.por.fl_str_mv |
Conversing learning como uma abordagem baseada em colaboração coletiva para diminuir os efeitos de desvio semântico em algoritmos de bootstrap learning |
| title |
Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms |
| spellingShingle |
Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms Pedro, Saulo Domingos de Souza Semantic drift Bootstrap learning Crowd-powered systems CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| title_short |
Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms |
| title_full |
Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms |
| title_fullStr |
Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms |
| title_full_unstemmed |
Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms |
| title_sort |
Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms |
| author |
Pedro, Saulo Domingos de Souza |
| author_facet |
Pedro, Saulo Domingos de Souza |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/4984413906818753 |
| dc.contributor.author.fl_str_mv |
Pedro, Saulo Domingos de Souza |
| dc.contributor.advisor1.fl_str_mv |
Hruschka Júnior, Estevam Rafael |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2097340857065853 |
| dc.contributor.authorID.fl_str_mv |
1a76caac-d109-4eed-bf1a-0761a1b1fb54 |
| contributor_str_mv |
Hruschka Júnior, Estevam Rafael |
| dc.subject.eng.fl_str_mv |
Semantic drift Bootstrap learning Crowd-powered systems |
| topic |
Semantic drift Bootstrap learning Crowd-powered systems CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
| description |
Internet and social Web made possible the acquisition of information to feed a growing number of Machine Learning applications and, in addition, brought light to the use of crowdsourcing approaches, commonly applied to problems that are easy for humans but difficult for computers to solve, building the crowd-powered systems. In this work, we consider the issue of semantic drift in a bootstrap learning algorithm and propose the novel idea of a crowd-powered approach to diminish the effects of such issue. To put this idea to test we built a hybrid version of the Coupled Pattern Learner, a bootstrap learning algorithm that extract contextual patterns from an unstructured text, and SSCrowd, a component that allows conversation between learning systems and Web users, in an attempt to actively and autonomously look for human supervision by asking people to take part into the knowledge acquisition process, thus using the intelligence of the crowd to improve the learning capabilities of Coupled Pattern Learner. We take advantage of the ease that humans have to understand language in unstructured text, and we show the results of using a hybrid crowd-powered approach to diminish the effects of semantic drift. |
| publishDate |
2019 |
| dc.date.issued.fl_str_mv |
2019-08-21 |
| dc.date.accessioned.fl_str_mv |
2021-07-03T11:56:19Z |
| dc.date.available.fl_str_mv |
2021-07-03T11:56:19Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
PEDRO, Saulo Domingos de Souza. Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14502. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/14502 |
| identifier_str_mv |
PEDRO, Saulo Domingos de Souza. Conversing learning as a crowd-powered approach to diminish the effects of semantic drift in bootstrap learning algorithms. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14502. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/14502 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.authority.fl_str_mv |
6c142165-1935-4e21-8c88-f27f8c42b0c1 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/9a52cac2-37e0-46bd-9746-588845d13a7c/download https://repositorio.ufscar.br/bitstreams/0a984c67-330f-46ab-a7e6-6c3274f4ca76/download https://repositorio.ufscar.br/bitstreams/51228560-1cd9-4d9a-9123-a67e1122ac13/download https://repositorio.ufscar.br/bitstreams/6140f573-9386-4b61-9ff5-13837c4336ad/download https://repositorio.ufscar.br/bitstreams/a2ee7133-60ee-4f94-81e0-a741eab1282e/download https://repositorio.ufscar.br/bitstreams/6975e925-a3ac-4078-9416-a5f43768f5a6/download https://repositorio.ufscar.br/bitstreams/63d0c3e4-6fba-45c2-87fa-ffa239dcc59c/download |
| bitstream.checksum.fl_str_mv |
625e23deaad6aa2777ead7e8526dcf5c 0683fc409308a5e872832613d2ffb412 e39d27027a6cc9cb039ad269a5db8e34 600faddd1581330fab753e5261aedafa 54aae0f4d146120fc3cf86a4f2707ea3 69256650f683d9ea0b6ee2b9772c7eeb ffe9a1c410c461b9b322341b33c20dc4 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688903387381760 |