Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Bogoni, Mariella Ananias
Orientador(a): Zuanetti, Daiane Aparecida lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/15643
Resumo: In this work, Bayesian methods for estimating and selecting variables in a mixture of logistic regressions model are presented. In order to simplify its Bayesian estimation, we extend the data augmentation approach with Pólya-Gamma random variables to the mixture of logistic regression models. Through the data augmentation approach, we present a Gibbs sampling algorithm for estimating the full model, and the number of components in the mixture is identified by Bayesian model selection criteria. In the model with variable selection, we investigate the performance of two prior distributions for the regression coefficients, adding a second set of latent variables to indicate the presence and non-presence of the predictor variables at each component of the mixture. Analogously to the full model, a Gibbs sampling algorithm is applied to the model with variable selection and the conjugation obtained for the distribution of the regression coefficients, through the inclusion of Pólya-Gamma variables, allows us to analytically calculate the marginal likelihood and gain computational efficiency in the variable selection process. To analyse the performance, the presented methodologies are applied in simulated and real data.
id SCAR_e5a622fa56c190c1d8957d049cc3c6b6
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/15643
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Bogoni, Mariella AnaniasZuanetti, Daiane Aparecidahttp://lattes.cnpq.br/8352484284929824http://lattes.cnpq.br/1099499926393005d8729a43-9739-494e-9b1f-f24a64935c8d2022-02-23T18:24:34Z2022-02-23T18:24:34Z2022-02-15BOGONI, Mariella Ananias. Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation. 2022. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15643.https://repositorio.ufscar.br/handle/20.500.14289/15643In this work, Bayesian methods for estimating and selecting variables in a mixture of logistic regressions model are presented. In order to simplify its Bayesian estimation, we extend the data augmentation approach with Pólya-Gamma random variables to the mixture of logistic regression models. Through the data augmentation approach, we present a Gibbs sampling algorithm for estimating the full model, and the number of components in the mixture is identified by Bayesian model selection criteria. In the model with variable selection, we investigate the performance of two prior distributions for the regression coefficients, adding a second set of latent variables to indicate the presence and non-presence of the predictor variables at each component of the mixture. Analogously to the full model, a Gibbs sampling algorithm is applied to the model with variable selection and the conjugation obtained for the distribution of the regression coefficients, through the inclusion of Pólya-Gamma variables, allows us to analytically calculate the marginal likelihood and gain computational efficiency in the variable selection process. To analyse the performance, the presented methodologies are applied in simulated and real data.Neste trabalho, métodos Bayesianos para estimação e seleção de variáveis em um modelo de mistura de regressão logística são apresentados. Com o objetivo de simplificar a inferência Bayesiana e ganhar eficiência computacional, a abordagem de aumento de dados com variáveis latentes Pólya-Gama é estendida para modelos de mistura de regressão logística. Através dela, o algoritmo amostrador de Gibbs é aplicado para a estimação do modelo completo, com a estimação do número de componentes da mistura sendo feita através de critérios Bayesianos de seleção de modelos. Para a seleção de variáveis, duas distribuições a priori para os coeficientes de regressão são investigadas, adicionando um segundo conjunto de variáveis latentes para indicar a presença e ausência das variáveis preditoras em cada componente da mistura. De modo análogo ao modelo completo, o algoritmo amostrador de Gibbs é aplicado no modelo com a seleção de variáveis e a conjugação obtida para a distribuição dos coeficientes de regressão, com a inclusão das variáveis Pólya-Gama, nos permite calcular analiticamente a verossimilhança marginal e ganhar eficiência computacional no processo de seleção de variáveis. Para analisar a performance dos métodos, as metodologias apresentadas são aplicadas em dados simulados e reais.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: Código de Financiamento 001engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessVariable selectionG-priorSpike and slab priorPólya-Gamma-samplingSeleção de variáveisG-prioriPriori spike e slabCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICABayesian variable selection for logistic mixture models with Pólya-Gamma data augmentationSeleção Bayesiana de variáveis para modelos de mistura de regressão logística com variáveis latentes Pólya-Gammainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600600b32a2fc3-5d19-41db-9bab-08a95238ddf5reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/47f03305-1383-4938-a534-2cddd5b0c419/downloade39d27027a6cc9cb039ad269a5db8e34MD54falseAnonymousREADORIGINALmonografia_final_ufscar.pdfmonografia_final_ufscar.pdfTexto da dissertação revisadoapplication/pdf971909https://repositorio.ufscar.br/bitstreams/2ea98317-850b-4fcb-bcc2-e3f5fdafe470/download4e4ef31a285a48237becf1bc044c5d53MD51trueAnonymousREADModelo carta-comprovante PIPGEs.pdfModelo carta-comprovante PIPGEs.pdfCarta de autorização de depositoapplication/pdf338505https://repositorio.ufscar.br/bitstreams/3960f9f1-d0f1-4daa-90c1-b3a3bf212908/downloadd5c1dc03e026e43153395146cca63edfMD53falseTEXTmonografia_final_ufscar.pdf.txtmonografia_final_ufscar.pdf.txtExtracted texttext/plain162201https://repositorio.ufscar.br/bitstreams/36c8deb2-9a45-4cdc-997e-efa00609863b/downloaded62bbc7bb04e130c750f10bb6e404f1MD59falseAnonymousREADModelo carta-comprovante PIPGEs.pdf.txtModelo carta-comprovante PIPGEs.pdf.txtExtracted texttext/plain1368https://repositorio.ufscar.br/bitstreams/34da9092-d995-4865-abcf-6a68bd97c7df/download218babd59720eb7af7112dbdec3997fbMD511falseTHUMBNAILmonografia_final_ufscar.pdf.jpgmonografia_final_ufscar.pdf.jpgIM Thumbnailimage/jpeg15232https://repositorio.ufscar.br/bitstreams/5dc7716f-fd84-4e42-b763-2627e1395622/downloada643b89e10b9fc289de3c664fa452715MD510falseAnonymousREADModelo carta-comprovante PIPGEs.pdf.jpgModelo carta-comprovante PIPGEs.pdf.jpgIM Thumbnailimage/jpeg10870https://repositorio.ufscar.br/bitstreams/cd4f441a-61d6-455f-9518-4fcadef6c5df/download9d779cc1ba3a22cd281f6447741c3afdMD512false20.500.14289/156432025-02-05 20:54:31.701http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/15643https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T23:54:31Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation
dc.title.alternative.por.fl_str_mv Seleção Bayesiana de variáveis para modelos de mistura de regressão logística com variáveis latentes Pólya-Gamma
title Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation
spellingShingle Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation
Bogoni, Mariella Ananias
Variable selection
G-prior
Spike and slab prior
Pólya-Gamma-sampling
Seleção de variáveis
G-priori
Priori spike e slab
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation
title_full Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation
title_fullStr Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation
title_full_unstemmed Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation
title_sort Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation
author Bogoni, Mariella Ananias
author_facet Bogoni, Mariella Ananias
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/1099499926393005
dc.contributor.author.fl_str_mv Bogoni, Mariella Ananias
dc.contributor.advisor1.fl_str_mv Zuanetti, Daiane Aparecida
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8352484284929824
dc.contributor.authorID.fl_str_mv d8729a43-9739-494e-9b1f-f24a64935c8d
contributor_str_mv Zuanetti, Daiane Aparecida
dc.subject.eng.fl_str_mv Variable selection
G-prior
Spike and slab prior
Pólya-Gamma-sampling
topic Variable selection
G-prior
Spike and slab prior
Pólya-Gamma-sampling
Seleção de variáveis
G-priori
Priori spike e slab
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.por.fl_str_mv Seleção de variáveis
G-priori
Priori spike e slab
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description In this work, Bayesian methods for estimating and selecting variables in a mixture of logistic regressions model are presented. In order to simplify its Bayesian estimation, we extend the data augmentation approach with Pólya-Gamma random variables to the mixture of logistic regression models. Through the data augmentation approach, we present a Gibbs sampling algorithm for estimating the full model, and the number of components in the mixture is identified by Bayesian model selection criteria. In the model with variable selection, we investigate the performance of two prior distributions for the regression coefficients, adding a second set of latent variables to indicate the presence and non-presence of the predictor variables at each component of the mixture. Analogously to the full model, a Gibbs sampling algorithm is applied to the model with variable selection and the conjugation obtained for the distribution of the regression coefficients, through the inclusion of Pólya-Gamma variables, allows us to analytically calculate the marginal likelihood and gain computational efficiency in the variable selection process. To analyse the performance, the presented methodologies are applied in simulated and real data.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-02-23T18:24:34Z
dc.date.available.fl_str_mv 2022-02-23T18:24:34Z
dc.date.issued.fl_str_mv 2022-02-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BOGONI, Mariella Ananias. Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation. 2022. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15643.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/15643
identifier_str_mv BOGONI, Mariella Ananias. Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation. 2022. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/15643.
url https://repositorio.ufscar.br/handle/20.500.14289/15643
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv b32a2fc3-5d19-41db-9bab-08a95238ddf5
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/47f03305-1383-4938-a534-2cddd5b0c419/download
https://repositorio.ufscar.br/bitstreams/2ea98317-850b-4fcb-bcc2-e3f5fdafe470/download
https://repositorio.ufscar.br/bitstreams/3960f9f1-d0f1-4daa-90c1-b3a3bf212908/download
https://repositorio.ufscar.br/bitstreams/36c8deb2-9a45-4cdc-997e-efa00609863b/download
https://repositorio.ufscar.br/bitstreams/34da9092-d995-4865-abcf-6a68bd97c7df/download
https://repositorio.ufscar.br/bitstreams/5dc7716f-fd84-4e42-b763-2627e1395622/download
https://repositorio.ufscar.br/bitstreams/cd4f441a-61d6-455f-9518-4fcadef6c5df/download
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
4e4ef31a285a48237becf1bc044c5d53
d5c1dc03e026e43153395146cca63edf
ed62bbc7bb04e130c750f10bb6e404f1
218babd59720eb7af7112dbdec3997fb
a643b89e10b9fc289de3c664fa452715
9d779cc1ba3a22cd281f6447741c3afd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688814790049792