Bayesian estimation of dynamic mixture models by wavelets
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
| Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/18028 |
Resumo: | Gaussian mixture models are used successfully in various statistical learning applications. The good results provided by these models encourage several generalizations of them. Among possible adaptations, one can assume a dynamic behavior for the mixture weights to make the model more adaptive to different data sets. When estimating this dynamic behavior, wavelet bases have emerged as an alternative. However, in the existing literature, the wavelet-based methods only estimate the dynamic mixing probabilities, failing to provide estimates for the component parameters of the mixture model. In this work, we propose two approaches based on orthonormal wavelets to estimate the dynamic mixture weights under efficient MCMC algorithms that allows us to estimate the component parameters from their posterior samples. We use simulated and real data sets to illustrate both approaches' performances. The results indicate that the proposed methods are promising and computationally efficient alternatives for estimating jointly the dynamic weights and the component parameter of two Gaussian mixtures. |
| id |
SCAR_b8d9c4c7553a584a05cb59e485e891e8 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/18028 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Motta, Flávia CastroMontoril, Michel Helciashttp://lattes.cnpq.br/9993502064983663http://lattes.cnpq.br/839259503967660887c27f86-e454-472d-a77c-56ba6440874b2023-05-17T13:32:49Z2023-05-17T13:32:49Z2023-04-20MOTTA, Flávia Castro. Bayesian estimation of dynamic mixture models by wavelets. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/18028.https://repositorio.ufscar.br/handle/20.500.14289/18028Gaussian mixture models are used successfully in various statistical learning applications. The good results provided by these models encourage several generalizations of them. Among possible adaptations, one can assume a dynamic behavior for the mixture weights to make the model more adaptive to different data sets. When estimating this dynamic behavior, wavelet bases have emerged as an alternative. However, in the existing literature, the wavelet-based methods only estimate the dynamic mixing probabilities, failing to provide estimates for the component parameters of the mixture model. In this work, we propose two approaches based on orthonormal wavelets to estimate the dynamic mixture weights under efficient MCMC algorithms that allows us to estimate the component parameters from their posterior samples. We use simulated and real data sets to illustrate both approaches' performances. The results indicate that the proposed methods are promising and computationally efficient alternatives for estimating jointly the dynamic weights and the component parameter of two Gaussian mixtures.Modelos de mistura gaussiana são usados com sucesso em várias aplicações de aprendizado estatístico. Os bons resultados fornecidos por esses modelos incentivam diversas generalizações destes. Entre as possíveis adaptações, pode-se supor um comportamento dinâmico para os pesos da mistura para tornar o modelo mais adaptável a diferentes conjuntos de dados. Ao estimar esse comportamento dinâmico, bases de ondaletas surgem como uma alternativa. No entanto, na literatura existente, os métodos baseados em ondaletas apenas estimam os pesos dinâmicos da mistura, não fornecendo estimativas para os parâmetros das componentes do modelo. Neste trabalho, propomos duas abordagens baseadas em ondaletas ortonormais para estimar o comportamento dinâmico do peso da mistura sob algoritmos MCMC eficientes que nos permitem estimar os parâmetros das componentes a partir de suas amostras posteriores. Usamos conjuntos de dados simulados e reais para ilustrar o desempenho de ambas as abordagens. Os resultados indicam que os métodos propostos são alternativas promissoras e computacionalmente eficientes para estimar misturas gaussianas dinâmicas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessMixture problemChange-point detectionWaveletsSpike and slab priorWavelet empirical BayesCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICABayesian estimation of dynamic mixture models by waveletsEstimação Bayesiana de modelos de mistura dinâmica por ondaletasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis60060055202e88-85cb-4ce4-bccd-6d142ebc1d2creponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertacao_Flavia_Motta_VERSAO_UFSCar.pdfDissertacao_Flavia_Motta_VERSAO_UFSCar.pdfDissertação de mestradoapplication/pdf6837151https://repositorio.ufscar.br/bitstreams/1527ce29-712d-4d12-8437-ba49380ed865/download24182a99eee3f366881a1f8726439b26MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8913https://repositorio.ufscar.br/bitstreams/40fcad6c-db80-490c-b2a0-f51d2bbc46a2/download3185b4de2190c2d366d1d324db01f8b8MD52falseAnonymousREADTEXTDissertacao_Flavia_Motta_VERSAO_UFSCar.pdf.txtDissertacao_Flavia_Motta_VERSAO_UFSCar.pdf.txtExtracted texttext/plain169171https://repositorio.ufscar.br/bitstreams/88f77131-3b07-41cb-9b25-119544c833d1/downloadeab9a6bd47c146174b37f8e14d7ce63aMD53falseAnonymousREADTHUMBNAILDissertacao_Flavia_Motta_VERSAO_UFSCar.pdf.jpgDissertacao_Flavia_Motta_VERSAO_UFSCar.pdf.jpgIM Thumbnailimage/jpeg15137https://repositorio.ufscar.br/bitstreams/67e4a386-3a20-4c90-9fd9-fec119e481bf/download36440e6464556d76429d7c4c261cdfdcMD54falseAnonymousREAD20.500.14289/180282025-02-05 23:41:53.005http://creativecommons.org/licenses/by/3.0/br/Attribution 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/18028https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T02:41:53Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.eng.fl_str_mv |
Bayesian estimation of dynamic mixture models by wavelets |
| dc.title.alternative.por.fl_str_mv |
Estimação Bayesiana de modelos de mistura dinâmica por ondaletas |
| title |
Bayesian estimation of dynamic mixture models by wavelets |
| spellingShingle |
Bayesian estimation of dynamic mixture models by wavelets Motta, Flávia Castro Mixture problem Change-point detection Wavelets Spike and slab prior Wavelet empirical Bayes CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA |
| title_short |
Bayesian estimation of dynamic mixture models by wavelets |
| title_full |
Bayesian estimation of dynamic mixture models by wavelets |
| title_fullStr |
Bayesian estimation of dynamic mixture models by wavelets |
| title_full_unstemmed |
Bayesian estimation of dynamic mixture models by wavelets |
| title_sort |
Bayesian estimation of dynamic mixture models by wavelets |
| author |
Motta, Flávia Castro |
| author_facet |
Motta, Flávia Castro |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/8392595039676608 |
| dc.contributor.author.fl_str_mv |
Motta, Flávia Castro |
| dc.contributor.advisor1.fl_str_mv |
Montoril, Michel Helcias |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9993502064983663 |
| dc.contributor.authorID.fl_str_mv |
87c27f86-e454-472d-a77c-56ba6440874b |
| contributor_str_mv |
Montoril, Michel Helcias |
| dc.subject.eng.fl_str_mv |
Mixture problem Change-point detection Wavelets Spike and slab prior Wavelet empirical Bayes |
| topic |
Mixture problem Change-point detection Wavelets Spike and slab prior Wavelet empirical Bayes CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA |
| description |
Gaussian mixture models are used successfully in various statistical learning applications. The good results provided by these models encourage several generalizations of them. Among possible adaptations, one can assume a dynamic behavior for the mixture weights to make the model more adaptive to different data sets. When estimating this dynamic behavior, wavelet bases have emerged as an alternative. However, in the existing literature, the wavelet-based methods only estimate the dynamic mixing probabilities, failing to provide estimates for the component parameters of the mixture model. In this work, we propose two approaches based on orthonormal wavelets to estimate the dynamic mixture weights under efficient MCMC algorithms that allows us to estimate the component parameters from their posterior samples. We use simulated and real data sets to illustrate both approaches' performances. The results indicate that the proposed methods are promising and computationally efficient alternatives for estimating jointly the dynamic weights and the component parameter of two Gaussian mixtures. |
| publishDate |
2023 |
| dc.date.accessioned.fl_str_mv |
2023-05-17T13:32:49Z |
| dc.date.available.fl_str_mv |
2023-05-17T13:32:49Z |
| dc.date.issued.fl_str_mv |
2023-04-20 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
MOTTA, Flávia Castro. Bayesian estimation of dynamic mixture models by wavelets. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/18028. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/18028 |
| identifier_str_mv |
MOTTA, Flávia Castro. Bayesian estimation of dynamic mixture models by wavelets. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/18028. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/18028 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
55202e88-85cb-4ce4-bccd-6d142ebc1d2c |
| dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.publisher.program.fl_str_mv |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/1527ce29-712d-4d12-8437-ba49380ed865/download https://repositorio.ufscar.br/bitstreams/40fcad6c-db80-490c-b2a0-f51d2bbc46a2/download https://repositorio.ufscar.br/bitstreams/88f77131-3b07-41cb-9b25-119544c833d1/download https://repositorio.ufscar.br/bitstreams/67e4a386-3a20-4c90-9fd9-fec119e481bf/download |
| bitstream.checksum.fl_str_mv |
24182a99eee3f366881a1f8726439b26 3185b4de2190c2d366d1d324db01f8b8 eab9a6bd47c146174b37f8e14d7ce63a 36440e6464556d76429d7c4c261cdfdc |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688800660488192 |