Bayesian estimation of dynamic mixture models by wavelets

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Motta, Flávia Castro
Orientador(a): Montoril, Michel Helcias lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/18028
Resumo: Gaussian mixture models are used successfully in various statistical learning applications. The good results provided by these models encourage several generalizations of them. Among possible adaptations, one can assume a dynamic behavior for the mixture weights to make the model more adaptive to different data sets. When estimating this dynamic behavior, wavelet bases have emerged as an alternative. However, in the existing literature, the wavelet-based methods only estimate the dynamic mixing probabilities, failing to provide estimates for the component parameters of the mixture model. In this work, we propose two approaches based on orthonormal wavelets to estimate the dynamic mixture weights under efficient MCMC algorithms that allows us to estimate the component parameters from their posterior samples. We use simulated and real data sets to illustrate both approaches' performances. The results indicate that the proposed methods are promising and computationally efficient alternatives for estimating jointly the dynamic weights and the component parameter of two Gaussian mixtures.
id SCAR_b8d9c4c7553a584a05cb59e485e891e8
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/18028
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str
spelling Motta, Flávia CastroMontoril, Michel Helciashttp://lattes.cnpq.br/9993502064983663http://lattes.cnpq.br/839259503967660887c27f86-e454-472d-a77c-56ba6440874b2023-05-17T13:32:49Z2023-05-17T13:32:49Z2023-04-20MOTTA, Flávia Castro. Bayesian estimation of dynamic mixture models by wavelets. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/18028.https://repositorio.ufscar.br/handle/20.500.14289/18028Gaussian mixture models are used successfully in various statistical learning applications. The good results provided by these models encourage several generalizations of them. Among possible adaptations, one can assume a dynamic behavior for the mixture weights to make the model more adaptive to different data sets. When estimating this dynamic behavior, wavelet bases have emerged as an alternative. However, in the existing literature, the wavelet-based methods only estimate the dynamic mixing probabilities, failing to provide estimates for the component parameters of the mixture model. In this work, we propose two approaches based on orthonormal wavelets to estimate the dynamic mixture weights under efficient MCMC algorithms that allows us to estimate the component parameters from their posterior samples. We use simulated and real data sets to illustrate both approaches' performances. The results indicate that the proposed methods are promising and computationally efficient alternatives for estimating jointly the dynamic weights and the component parameter of two Gaussian mixtures.Modelos de mistura gaussiana são usados com sucesso em várias aplicações de aprendizado estatístico. Os bons resultados fornecidos por esses modelos incentivam diversas generalizações destes. Entre as possíveis adaptações, pode-se supor um comportamento dinâmico para os pesos da mistura para tornar o modelo mais adaptável a diferentes conjuntos de dados. Ao estimar esse comportamento dinâmico, bases de ondaletas surgem como uma alternativa. No entanto, na literatura existente, os métodos baseados em ondaletas apenas estimam os pesos dinâmicos da mistura, não fornecendo estimativas para os parâmetros das componentes do modelo. Neste trabalho, propomos duas abordagens baseadas em ondaletas ortonormais para estimar o comportamento dinâmico do peso da mistura sob algoritmos MCMC eficientes que nos permitem estimar os parâmetros das componentes a partir de suas amostras posteriores. Usamos conjuntos de dados simulados e reais para ilustrar o desempenho de ambas as abordagens. Os resultados indicam que os métodos propostos são alternativas promissoras e computacionalmente eficientes para estimar misturas gaussianas dinâmicas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)engUniversidade Federal de São CarlosCâmpus São CarlosPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEsUFSCarAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessMixture problemChange-point detectionWaveletsSpike and slab priorWavelet empirical BayesCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICABayesian estimation of dynamic mixture models by waveletsEstimação Bayesiana de modelos de mistura dinâmica por ondaletasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis60060055202e88-85cb-4ce4-bccd-6d142ebc1d2creponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertacao_Flavia_Motta_VERSAO_UFSCar.pdfDissertacao_Flavia_Motta_VERSAO_UFSCar.pdfDissertação de mestradoapplication/pdf6837151https://repositorio.ufscar.br/bitstreams/1527ce29-712d-4d12-8437-ba49380ed865/download24182a99eee3f366881a1f8726439b26MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8913https://repositorio.ufscar.br/bitstreams/40fcad6c-db80-490c-b2a0-f51d2bbc46a2/download3185b4de2190c2d366d1d324db01f8b8MD52falseAnonymousREADTEXTDissertacao_Flavia_Motta_VERSAO_UFSCar.pdf.txtDissertacao_Flavia_Motta_VERSAO_UFSCar.pdf.txtExtracted texttext/plain169171https://repositorio.ufscar.br/bitstreams/88f77131-3b07-41cb-9b25-119544c833d1/downloadeab9a6bd47c146174b37f8e14d7ce63aMD53falseAnonymousREADTHUMBNAILDissertacao_Flavia_Motta_VERSAO_UFSCar.pdf.jpgDissertacao_Flavia_Motta_VERSAO_UFSCar.pdf.jpgIM Thumbnailimage/jpeg15137https://repositorio.ufscar.br/bitstreams/67e4a386-3a20-4c90-9fd9-fec119e481bf/download36440e6464556d76429d7c4c261cdfdcMD54falseAnonymousREAD20.500.14289/180282025-02-05 23:41:53.005http://creativecommons.org/licenses/by/3.0/br/Attribution 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/18028https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T02:41:53Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Bayesian estimation of dynamic mixture models by wavelets
dc.title.alternative.por.fl_str_mv Estimação Bayesiana de modelos de mistura dinâmica por ondaletas
title Bayesian estimation of dynamic mixture models by wavelets
spellingShingle Bayesian estimation of dynamic mixture models by wavelets
Motta, Flávia Castro
Mixture problem
Change-point detection
Wavelets
Spike and slab prior
Wavelet empirical Bayes
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA
title_short Bayesian estimation of dynamic mixture models by wavelets
title_full Bayesian estimation of dynamic mixture models by wavelets
title_fullStr Bayesian estimation of dynamic mixture models by wavelets
title_full_unstemmed Bayesian estimation of dynamic mixture models by wavelets
title_sort Bayesian estimation of dynamic mixture models by wavelets
author Motta, Flávia Castro
author_facet Motta, Flávia Castro
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/8392595039676608
dc.contributor.author.fl_str_mv Motta, Flávia Castro
dc.contributor.advisor1.fl_str_mv Montoril, Michel Helcias
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9993502064983663
dc.contributor.authorID.fl_str_mv 87c27f86-e454-472d-a77c-56ba6440874b
contributor_str_mv Montoril, Michel Helcias
dc.subject.eng.fl_str_mv Mixture problem
Change-point detection
Wavelets
Spike and slab prior
Wavelet empirical Bayes
topic Mixture problem
Change-point detection
Wavelets
Spike and slab prior
Wavelet empirical Bayes
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA::INFERENCIA NAO-PARAMETRICA
description Gaussian mixture models are used successfully in various statistical learning applications. The good results provided by these models encourage several generalizations of them. Among possible adaptations, one can assume a dynamic behavior for the mixture weights to make the model more adaptive to different data sets. When estimating this dynamic behavior, wavelet bases have emerged as an alternative. However, in the existing literature, the wavelet-based methods only estimate the dynamic mixing probabilities, failing to provide estimates for the component parameters of the mixture model. In this work, we propose two approaches based on orthonormal wavelets to estimate the dynamic mixture weights under efficient MCMC algorithms that allows us to estimate the component parameters from their posterior samples. We use simulated and real data sets to illustrate both approaches' performances. The results indicate that the proposed methods are promising and computationally efficient alternatives for estimating jointly the dynamic weights and the component parameter of two Gaussian mixtures.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-05-17T13:32:49Z
dc.date.available.fl_str_mv 2023-05-17T13:32:49Z
dc.date.issued.fl_str_mv 2023-04-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MOTTA, Flávia Castro. Bayesian estimation of dynamic mixture models by wavelets. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/18028.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/18028
identifier_str_mv MOTTA, Flávia Castro. Bayesian estimation of dynamic mixture models by wavelets. 2023. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/18028.
url https://repositorio.ufscar.br/handle/20.500.14289/18028
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 55202e88-85cb-4ce4-bccd-6d142ebc1d2c
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/1527ce29-712d-4d12-8437-ba49380ed865/download
https://repositorio.ufscar.br/bitstreams/40fcad6c-db80-490c-b2a0-f51d2bbc46a2/download
https://repositorio.ufscar.br/bitstreams/88f77131-3b07-41cb-9b25-119544c833d1/download
https://repositorio.ufscar.br/bitstreams/67e4a386-3a20-4c90-9fd9-fec119e481bf/download
bitstream.checksum.fl_str_mv 24182a99eee3f366881a1f8726439b26
3185b4de2190c2d366d1d324db01f8b8
eab9a6bd47c146174b37f8e14d7ce63a
36440e6464556d76429d7c4c261cdfdc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1851688800660488192