Computer vision and convolutional neural networks applied in pavement evaluation

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Espindola, Aline Calheiros
Orientador(a): Nobre Junior, Ernesto Ferreira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/83018
Resumo: The implementation of new technologies in pavement management systems (PMS) is crucial, particularly through computer vision and machine learning to develop automatic pavement evaluation systems. This research presents a deep convolutional neural network (CNN) model capable of classifying various pavement types, including concrete, asphalt, interlocking, cobblestone/stone, and unpaved roads, achieving nearly 100% accuracy. Additionally,the study explores image-based distress diagnosis using multi-label classification (MLC) models with ResNet-50 architecture, achieving a 96% accuracy rate and a 91% F1-score, effectively identifying pavement distress from network-level video surveys. This approach reduces the need for expensive sensors, offering a cost-effective alternative for comprehensive road condition assessments. Continuous and extensive examination of pavement surfaces is vital for PMS effectiveness, and automated assessments using CNNs offera feasible solution by quickly and accurately identifying defects, thereby reducing manual evaluation costs. The research proposes a Simplified Pavement State Index (SPS) using 2D images from low-cost cameras, demonstrating high similarity in prioritizing segments for intervention compared to the traditional Global Severity Index (IGG). Automating data collection through CNNs provides increased efficiency, enabling continuous monitoring and timely maintenance. Despite the initial investment and challenges in ensuring system robustness, the use of action cameras and smartphones presents a low-cost alternative supporting network-level PMS initiative. This study emphasizes the importance of collaboration between academia and highway management agencies for continuous improvement and underscores the potential of automated assessments to revolutionize pavement management, providing rapid, and comprehensive evaluations, ultimately aiding in effective maintenance and extending pavement service life.
id UFC-7_1286eecfcb8e330c70f53c7a052cda18
oai_identifier_str oai:repositorio.ufc.br:riufc/83018
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Espindola, Aline CalheirosRahman, MujibNobre Junior, Ernesto Ferreira2025-10-13T18:51:10Z2025-10-13T18:51:10Z2024ESPINDOLA, Aline Calheiros. Computer vision and convolutional neural networks applied in pavement evaluation. 220 f. 2024. Tese (Doutorado em Engenharia de Transportes) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/83018The implementation of new technologies in pavement management systems (PMS) is crucial, particularly through computer vision and machine learning to develop automatic pavement evaluation systems. This research presents a deep convolutional neural network (CNN) model capable of classifying various pavement types, including concrete, asphalt, interlocking, cobblestone/stone, and unpaved roads, achieving nearly 100% accuracy. Additionally,the study explores image-based distress diagnosis using multi-label classification (MLC) models with ResNet-50 architecture, achieving a 96% accuracy rate and a 91% F1-score, effectively identifying pavement distress from network-level video surveys. This approach reduces the need for expensive sensors, offering a cost-effective alternative for comprehensive road condition assessments. Continuous and extensive examination of pavement surfaces is vital for PMS effectiveness, and automated assessments using CNNs offera feasible solution by quickly and accurately identifying defects, thereby reducing manual evaluation costs. The research proposes a Simplified Pavement State Index (SPS) using 2D images from low-cost cameras, demonstrating high similarity in prioritizing segments for intervention compared to the traditional Global Severity Index (IGG). Automating data collection through CNNs provides increased efficiency, enabling continuous monitoring and timely maintenance. Despite the initial investment and challenges in ensuring system robustness, the use of action cameras and smartphones presents a low-cost alternative supporting network-level PMS initiative. This study emphasizes the importance of collaboration between academia and highway management agencies for continuous improvement and underscores the potential of automated assessments to revolutionize pavement management, providing rapid, and comprehensive evaluations, ultimately aiding in effective maintenance and extending pavement service life.A implementação denovas tecnologias no sistema degerência depavimentos (SGP) é essencial, especialmente por meio da visão computacional e do aprendizado de máquina, para o desenvolvimento de sistemas automáticos de avaliação de pavimentos. Esta pesquisa apresenta um modelo profundo de rede neural convolucional (CNN) capaz de classificar diversos tipos depavimentos – incluindo concreto, asfalto, blocos intertravados, paralelepípedos / pedra e vias não pavimentadas – alcançando uma precisão próxima de 100%. Adicionalmente, o estudo explora o diagnóstico de defeitos com base em imagens, utilizando modelos de classificação multi-rótulo (MLC) com arquitetura ResNet-50, obtendo uma precisão de 96% e um F1-score de 91%, identificando eficazmente deteriorações do pavimento a partir de levantamentos em vídeo em nível de rede. Essa abordagem reduz a necessidade de sensores caros, oferecendo uma alternativa econômica para avaliações abrangentes das condições das vias. O exame contínuo e extensivo das superfícies de pavimento é vital para a eficácia do SGP, e as avaliações automatizadas com CNNs representam uma solução viável ao identificar defeitos de forma rápida e precisa, reduzindo os custos com avaliações manuais. A pesquisa propõe um Índice Simplificado doEstado do Pavimento (SPS), utilizando imagens 2D de câmeras debaixo custo, demonstrando alta similaridade na priorização de segmentos para intervenção quando comparado ao tradicional Índice Global de Gravidade (IGG). A automação da coleta de dados por meio de CNNs proporciona maior eficiência, permitindo o monitoramento contínuo e a manutenção oportuna. Apesar do investimento inicial e dos desafios para garantir a robustez do sistema, o uso de câmeras de ação e smartphones apresenta uma alternativa de baixo custo que apoia as iniciativas do SGPem nível de rede. Este estudo enfatiza a importância da colaboração entre a academia e os órgãos degestão rodoviária para a melhoria contínua e destaca o potencial das avaliações automatizadas para revolucionar a gestão de pavimentos, oferecendo avaliações rápidas e abrangentes, auxiliando na manutenção eficaz e prolongando a vida útil do pavimento.Este documento está disponível online com base na Portaria no 348, de 08 de dezembro de 2022, disponível em: https://biblioteca.ufc.br/wp-content/uploads/2022/12/portaria348-2022.pdf, que autoriza a digitalização e a disponibilização no Repositório Institucional (RI) da coleção retrospectiva de TCC, dissertações e teses da UFC, sem o termo de anuência prévia dos autores. Em caso de trabalhos com pedidos de patente e/ou de embargo, cabe, exclusivamente, ao autor(a) solicitar a restrição de acesso ou retirada de seu trabalho do RI, mediante apresentação de documento comprobatório à Direção do Sistema de Bibliotecas.Computer vision and convolutional neural networks applied in pavement evaluationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisSistema de Gerência de Pavimentos: Redes neurais convolucionaisClassificação de imagensÍndice Simplificado do Estado do PavimentoPavimentos - ClassificaçãoPavimentos - DefeitosPavement Management SystemConvolutional neural networksImage classificationSimplified Pavement State IndexPavement classificationPavements - DefectsCNPQ::ENGENHARIAS::ENGENHARIA DE TRANSPORTESinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttps://orcid.org/0000-0001-7790-3855http://lattes.cnpq.br/4521033460312471http://lattes.cnpq.br/34279700215501022024-07-29ORIGINAL2024_tese_acespindola.pdf2024_tese_acespindola.pdfapplication/pdf30228487http://repositorio.ufc.br/bitstream/riufc/83018/1/2024_tese_acespindola.pdfb3328088aba7a68e31e0f4ec1c3fcaf9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/83018/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/830182025-10-13 15:51:11.277oai:repositorio.ufc.br:riufc/83018Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-10-13T18:51:11Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Computer vision and convolutional neural networks applied in pavement evaluation
title Computer vision and convolutional neural networks applied in pavement evaluation
spellingShingle Computer vision and convolutional neural networks applied in pavement evaluation
Espindola, Aline Calheiros
CNPQ::ENGENHARIAS::ENGENHARIA DE TRANSPORTES
Sistema de Gerência de Pavimentos
: Redes neurais convolucionais
Classificação de imagens
Índice Simplificado do Estado do Pavimento
Pavimentos - Classificação
Pavimentos - Defeitos
Pavement Management System
Convolutional neural networks
Image classification
Simplified Pavement State Index
Pavement classification
Pavements - Defects
title_short Computer vision and convolutional neural networks applied in pavement evaluation
title_full Computer vision and convolutional neural networks applied in pavement evaluation
title_fullStr Computer vision and convolutional neural networks applied in pavement evaluation
title_full_unstemmed Computer vision and convolutional neural networks applied in pavement evaluation
title_sort Computer vision and convolutional neural networks applied in pavement evaluation
author Espindola, Aline Calheiros
author_facet Espindola, Aline Calheiros
author_role author
dc.contributor.co-advisor.none.fl_str_mv Rahman, Mujib
dc.contributor.author.fl_str_mv Espindola, Aline Calheiros
dc.contributor.advisor1.fl_str_mv Nobre Junior, Ernesto Ferreira
contributor_str_mv Nobre Junior, Ernesto Ferreira
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA DE TRANSPORTES
topic CNPQ::ENGENHARIAS::ENGENHARIA DE TRANSPORTES
Sistema de Gerência de Pavimentos
: Redes neurais convolucionais
Classificação de imagens
Índice Simplificado do Estado do Pavimento
Pavimentos - Classificação
Pavimentos - Defeitos
Pavement Management System
Convolutional neural networks
Image classification
Simplified Pavement State Index
Pavement classification
Pavements - Defects
dc.subject.ptbr.pt_BR.fl_str_mv Sistema de Gerência de Pavimentos
: Redes neurais convolucionais
Classificação de imagens
Índice Simplificado do Estado do Pavimento
Pavimentos - Classificação
Pavimentos - Defeitos
dc.subject.en.pt_BR.fl_str_mv Pavement Management System
Convolutional neural networks
Image classification
Simplified Pavement State Index
Pavement classification
Pavements - Defects
description The implementation of new technologies in pavement management systems (PMS) is crucial, particularly through computer vision and machine learning to develop automatic pavement evaluation systems. This research presents a deep convolutional neural network (CNN) model capable of classifying various pavement types, including concrete, asphalt, interlocking, cobblestone/stone, and unpaved roads, achieving nearly 100% accuracy. Additionally,the study explores image-based distress diagnosis using multi-label classification (MLC) models with ResNet-50 architecture, achieving a 96% accuracy rate and a 91% F1-score, effectively identifying pavement distress from network-level video surveys. This approach reduces the need for expensive sensors, offering a cost-effective alternative for comprehensive road condition assessments. Continuous and extensive examination of pavement surfaces is vital for PMS effectiveness, and automated assessments using CNNs offera feasible solution by quickly and accurately identifying defects, thereby reducing manual evaluation costs. The research proposes a Simplified Pavement State Index (SPS) using 2D images from low-cost cameras, demonstrating high similarity in prioritizing segments for intervention compared to the traditional Global Severity Index (IGG). Automating data collection through CNNs provides increased efficiency, enabling continuous monitoring and timely maintenance. Despite the initial investment and challenges in ensuring system robustness, the use of action cameras and smartphones presents a low-cost alternative supporting network-level PMS initiative. This study emphasizes the importance of collaboration between academia and highway management agencies for continuous improvement and underscores the potential of automated assessments to revolutionize pavement management, providing rapid, and comprehensive evaluations, ultimately aiding in effective maintenance and extending pavement service life.
publishDate 2024
dc.date.issued.fl_str_mv 2024
dc.date.accessioned.fl_str_mv 2025-10-13T18:51:10Z
dc.date.available.fl_str_mv 2025-10-13T18:51:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ESPINDOLA, Aline Calheiros. Computer vision and convolutional neural networks applied in pavement evaluation. 220 f. 2024. Tese (Doutorado em Engenharia de Transportes) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2024.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/83018
identifier_str_mv ESPINDOLA, Aline Calheiros. Computer vision and convolutional neural networks applied in pavement evaluation. 220 f. 2024. Tese (Doutorado em Engenharia de Transportes) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2024.
url http://repositorio.ufc.br/handle/riufc/83018
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/83018/1/2024_tese_acespindola.pdf
http://repositorio.ufc.br/bitstream/riufc/83018/2/license.txt
bitstream.checksum.fl_str_mv b3328088aba7a68e31e0f4ec1c3fcaf9
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793286208552960