Computer vision and convolutional neural networks applied in pavement evaluation
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/83018 |
Resumo: | The implementation of new technologies in pavement management systems (PMS) is crucial, particularly through computer vision and machine learning to develop automatic pavement evaluation systems. This research presents a deep convolutional neural network (CNN) model capable of classifying various pavement types, including concrete, asphalt, interlocking, cobblestone/stone, and unpaved roads, achieving nearly 100% accuracy. Additionally,the study explores image-based distress diagnosis using multi-label classification (MLC) models with ResNet-50 architecture, achieving a 96% accuracy rate and a 91% F1-score, effectively identifying pavement distress from network-level video surveys. This approach reduces the need for expensive sensors, offering a cost-effective alternative for comprehensive road condition assessments. Continuous and extensive examination of pavement surfaces is vital for PMS effectiveness, and automated assessments using CNNs offera feasible solution by quickly and accurately identifying defects, thereby reducing manual evaluation costs. The research proposes a Simplified Pavement State Index (SPS) using 2D images from low-cost cameras, demonstrating high similarity in prioritizing segments for intervention compared to the traditional Global Severity Index (IGG). Automating data collection through CNNs provides increased efficiency, enabling continuous monitoring and timely maintenance. Despite the initial investment and challenges in ensuring system robustness, the use of action cameras and smartphones presents a low-cost alternative supporting network-level PMS initiative. This study emphasizes the importance of collaboration between academia and highway management agencies for continuous improvement and underscores the potential of automated assessments to revolutionize pavement management, providing rapid, and comprehensive evaluations, ultimately aiding in effective maintenance and extending pavement service life. |
| id |
UFC-7_1286eecfcb8e330c70f53c7a052cda18 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/83018 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Espindola, Aline CalheirosRahman, MujibNobre Junior, Ernesto Ferreira2025-10-13T18:51:10Z2025-10-13T18:51:10Z2024ESPINDOLA, Aline Calheiros. Computer vision and convolutional neural networks applied in pavement evaluation. 220 f. 2024. Tese (Doutorado em Engenharia de Transportes) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/83018The implementation of new technologies in pavement management systems (PMS) is crucial, particularly through computer vision and machine learning to develop automatic pavement evaluation systems. This research presents a deep convolutional neural network (CNN) model capable of classifying various pavement types, including concrete, asphalt, interlocking, cobblestone/stone, and unpaved roads, achieving nearly 100% accuracy. Additionally,the study explores image-based distress diagnosis using multi-label classification (MLC) models with ResNet-50 architecture, achieving a 96% accuracy rate and a 91% F1-score, effectively identifying pavement distress from network-level video surveys. This approach reduces the need for expensive sensors, offering a cost-effective alternative for comprehensive road condition assessments. Continuous and extensive examination of pavement surfaces is vital for PMS effectiveness, and automated assessments using CNNs offera feasible solution by quickly and accurately identifying defects, thereby reducing manual evaluation costs. The research proposes a Simplified Pavement State Index (SPS) using 2D images from low-cost cameras, demonstrating high similarity in prioritizing segments for intervention compared to the traditional Global Severity Index (IGG). Automating data collection through CNNs provides increased efficiency, enabling continuous monitoring and timely maintenance. Despite the initial investment and challenges in ensuring system robustness, the use of action cameras and smartphones presents a low-cost alternative supporting network-level PMS initiative. This study emphasizes the importance of collaboration between academia and highway management agencies for continuous improvement and underscores the potential of automated assessments to revolutionize pavement management, providing rapid, and comprehensive evaluations, ultimately aiding in effective maintenance and extending pavement service life.A implementação denovas tecnologias no sistema degerência depavimentos (SGP) é essencial, especialmente por meio da visão computacional e do aprendizado de máquina, para o desenvolvimento de sistemas automáticos de avaliação de pavimentos. Esta pesquisa apresenta um modelo profundo de rede neural convolucional (CNN) capaz de classificar diversos tipos depavimentos – incluindo concreto, asfalto, blocos intertravados, paralelepípedos / pedra e vias não pavimentadas – alcançando uma precisão próxima de 100%. Adicionalmente, o estudo explora o diagnóstico de defeitos com base em imagens, utilizando modelos de classificação multi-rótulo (MLC) com arquitetura ResNet-50, obtendo uma precisão de 96% e um F1-score de 91%, identificando eficazmente deteriorações do pavimento a partir de levantamentos em vídeo em nível de rede. Essa abordagem reduz a necessidade de sensores caros, oferecendo uma alternativa econômica para avaliações abrangentes das condições das vias. O exame contínuo e extensivo das superfícies de pavimento é vital para a eficácia do SGP, e as avaliações automatizadas com CNNs representam uma solução viável ao identificar defeitos de forma rápida e precisa, reduzindo os custos com avaliações manuais. A pesquisa propõe um Índice Simplificado doEstado do Pavimento (SPS), utilizando imagens 2D de câmeras debaixo custo, demonstrando alta similaridade na priorização de segmentos para intervenção quando comparado ao tradicional Índice Global de Gravidade (IGG). A automação da coleta de dados por meio de CNNs proporciona maior eficiência, permitindo o monitoramento contínuo e a manutenção oportuna. Apesar do investimento inicial e dos desafios para garantir a robustez do sistema, o uso de câmeras de ação e smartphones apresenta uma alternativa de baixo custo que apoia as iniciativas do SGPem nível de rede. Este estudo enfatiza a importância da colaboração entre a academia e os órgãos degestão rodoviária para a melhoria contínua e destaca o potencial das avaliações automatizadas para revolucionar a gestão de pavimentos, oferecendo avaliações rápidas e abrangentes, auxiliando na manutenção eficaz e prolongando a vida útil do pavimento.Este documento está disponível online com base na Portaria no 348, de 08 de dezembro de 2022, disponível em: https://biblioteca.ufc.br/wp-content/uploads/2022/12/portaria348-2022.pdf, que autoriza a digitalização e a disponibilização no Repositório Institucional (RI) da coleção retrospectiva de TCC, dissertações e teses da UFC, sem o termo de anuência prévia dos autores. Em caso de trabalhos com pedidos de patente e/ou de embargo, cabe, exclusivamente, ao autor(a) solicitar a restrição de acesso ou retirada de seu trabalho do RI, mediante apresentação de documento comprobatório à Direção do Sistema de Bibliotecas.Computer vision and convolutional neural networks applied in pavement evaluationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisSistema de Gerência de Pavimentos: Redes neurais convolucionaisClassificação de imagensÍndice Simplificado do Estado do PavimentoPavimentos - ClassificaçãoPavimentos - DefeitosPavement Management SystemConvolutional neural networksImage classificationSimplified Pavement State IndexPavement classificationPavements - DefectsCNPQ::ENGENHARIAS::ENGENHARIA DE TRANSPORTESinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttps://orcid.org/0000-0001-7790-3855http://lattes.cnpq.br/4521033460312471http://lattes.cnpq.br/34279700215501022024-07-29ORIGINAL2024_tese_acespindola.pdf2024_tese_acespindola.pdfapplication/pdf30228487http://repositorio.ufc.br/bitstream/riufc/83018/1/2024_tese_acespindola.pdfb3328088aba7a68e31e0f4ec1c3fcaf9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/83018/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/830182025-10-13 15:51:11.277oai:repositorio.ufc.br:riufc/83018Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-10-13T18:51:11Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Computer vision and convolutional neural networks applied in pavement evaluation |
| title |
Computer vision and convolutional neural networks applied in pavement evaluation |
| spellingShingle |
Computer vision and convolutional neural networks applied in pavement evaluation Espindola, Aline Calheiros CNPQ::ENGENHARIAS::ENGENHARIA DE TRANSPORTES Sistema de Gerência de Pavimentos : Redes neurais convolucionais Classificação de imagens Índice Simplificado do Estado do Pavimento Pavimentos - Classificação Pavimentos - Defeitos Pavement Management System Convolutional neural networks Image classification Simplified Pavement State Index Pavement classification Pavements - Defects |
| title_short |
Computer vision and convolutional neural networks applied in pavement evaluation |
| title_full |
Computer vision and convolutional neural networks applied in pavement evaluation |
| title_fullStr |
Computer vision and convolutional neural networks applied in pavement evaluation |
| title_full_unstemmed |
Computer vision and convolutional neural networks applied in pavement evaluation |
| title_sort |
Computer vision and convolutional neural networks applied in pavement evaluation |
| author |
Espindola, Aline Calheiros |
| author_facet |
Espindola, Aline Calheiros |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Rahman, Mujib |
| dc.contributor.author.fl_str_mv |
Espindola, Aline Calheiros |
| dc.contributor.advisor1.fl_str_mv |
Nobre Junior, Ernesto Ferreira |
| contributor_str_mv |
Nobre Junior, Ernesto Ferreira |
| dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA DE TRANSPORTES |
| topic |
CNPQ::ENGENHARIAS::ENGENHARIA DE TRANSPORTES Sistema de Gerência de Pavimentos : Redes neurais convolucionais Classificação de imagens Índice Simplificado do Estado do Pavimento Pavimentos - Classificação Pavimentos - Defeitos Pavement Management System Convolutional neural networks Image classification Simplified Pavement State Index Pavement classification Pavements - Defects |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Sistema de Gerência de Pavimentos : Redes neurais convolucionais Classificação de imagens Índice Simplificado do Estado do Pavimento Pavimentos - Classificação Pavimentos - Defeitos |
| dc.subject.en.pt_BR.fl_str_mv |
Pavement Management System Convolutional neural networks Image classification Simplified Pavement State Index Pavement classification Pavements - Defects |
| description |
The implementation of new technologies in pavement management systems (PMS) is crucial, particularly through computer vision and machine learning to develop automatic pavement evaluation systems. This research presents a deep convolutional neural network (CNN) model capable of classifying various pavement types, including concrete, asphalt, interlocking, cobblestone/stone, and unpaved roads, achieving nearly 100% accuracy. Additionally,the study explores image-based distress diagnosis using multi-label classification (MLC) models with ResNet-50 architecture, achieving a 96% accuracy rate and a 91% F1-score, effectively identifying pavement distress from network-level video surveys. This approach reduces the need for expensive sensors, offering a cost-effective alternative for comprehensive road condition assessments. Continuous and extensive examination of pavement surfaces is vital for PMS effectiveness, and automated assessments using CNNs offera feasible solution by quickly and accurately identifying defects, thereby reducing manual evaluation costs. The research proposes a Simplified Pavement State Index (SPS) using 2D images from low-cost cameras, demonstrating high similarity in prioritizing segments for intervention compared to the traditional Global Severity Index (IGG). Automating data collection through CNNs provides increased efficiency, enabling continuous monitoring and timely maintenance. Despite the initial investment and challenges in ensuring system robustness, the use of action cameras and smartphones presents a low-cost alternative supporting network-level PMS initiative. This study emphasizes the importance of collaboration between academia and highway management agencies for continuous improvement and underscores the potential of automated assessments to revolutionize pavement management, providing rapid, and comprehensive evaluations, ultimately aiding in effective maintenance and extending pavement service life. |
| publishDate |
2024 |
| dc.date.issued.fl_str_mv |
2024 |
| dc.date.accessioned.fl_str_mv |
2025-10-13T18:51:10Z |
| dc.date.available.fl_str_mv |
2025-10-13T18:51:10Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
ESPINDOLA, Aline Calheiros. Computer vision and convolutional neural networks applied in pavement evaluation. 220 f. 2024. Tese (Doutorado em Engenharia de Transportes) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2024. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/83018 |
| identifier_str_mv |
ESPINDOLA, Aline Calheiros. Computer vision and convolutional neural networks applied in pavement evaluation. 220 f. 2024. Tese (Doutorado em Engenharia de Transportes) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2024. |
| url |
http://repositorio.ufc.br/handle/riufc/83018 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/83018/1/2024_tese_acespindola.pdf http://repositorio.ufc.br/bitstream/riufc/83018/2/license.txt |
| bitstream.checksum.fl_str_mv |
b3328088aba7a68e31e0f4ec1c3fcaf9 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793286208552960 |