Circular backbone coloring for graphs without cycles of size four
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/75456 |
Resumo: | Given a graph G = (V(G),E(G)) and a subgraph H = (V(H),E(H)) of G, a q-backbone k-coloring of (G,H) is a function φ : V(G) → { 1 , 2 , 3 ,...,k} such that, for every edge uv ∈ E(G) , we have |φ(u) − φ(v)| ≥ 1 and, for every edge uv ∈ E(H) , we have |φ(u) − φ(v)| ≥ q. The q-backbone chromatic number of (G,H) , denoted by BBCq (G,H) , is the smallest integer k such that there exists such coloring φ . Similarly, a circular q-backbone k-coloring of (G,H) is a function φ : V(G) → { 1 , 2 , 3 ,...,k} such that, for every edge uv ∈ E(G) , we have |φ(u) − φ(v)| ≥ 1 and, for every edge uv ∈ E(H) , we have k − q ≥ |φ(u) − φ(v)| ≥ q. The circular q-backbone chromatic number of (G,H) , denoted by CBCq (G,H) , is the smallest integer k such that there exists such coloring φ . In this dissertation, we firstly present a brief summary on the results found in literature regarding Backbone Coloring. Then, we prove that if G is a planar graph without cycles of size four and F is a spanning forest of induced paths of G, then CBC2 (G,F) ≤ 7. Lastly, we show the following theorem : if G is a connected graph and k ≥ max {χ(G), χ(G)/ 2 +q} , then there exists a proper k-coloring c of G such that Gc,q is connected, where Gc,q is the subgraph of G such that V(Gc,q ) = V(G) and E(Gc,q ) is the set of edges vw ∈ E(G) that satisfy |c(v)−c(w)| ≥ q. |
| id |
UFC-7_28fc82fd9cc19351360b0252bfa52b18 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/75456 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Cezar, Alexandre AzevedoSilva, Ana Shirley Ferreira daAraújo, Júlio César Silva2023-12-21T16:23:48Z2023-12-21T16:23:48Z2016CEZAR, Alexandre Azevedo. Circular backbone coloring for graphs without cycles of size four. 2016. 45 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.http://repositorio.ufc.br/handle/riufc/75456Given a graph G = (V(G),E(G)) and a subgraph H = (V(H),E(H)) of G, a q-backbone k-coloring of (G,H) is a function φ : V(G) → { 1 , 2 , 3 ,...,k} such that, for every edge uv ∈ E(G) , we have |φ(u) − φ(v)| ≥ 1 and, for every edge uv ∈ E(H) , we have |φ(u) − φ(v)| ≥ q. The q-backbone chromatic number of (G,H) , denoted by BBCq (G,H) , is the smallest integer k such that there exists such coloring φ . Similarly, a circular q-backbone k-coloring of (G,H) is a function φ : V(G) → { 1 , 2 , 3 ,...,k} such that, for every edge uv ∈ E(G) , we have |φ(u) − φ(v)| ≥ 1 and, for every edge uv ∈ E(H) , we have k − q ≥ |φ(u) − φ(v)| ≥ q. The circular q-backbone chromatic number of (G,H) , denoted by CBCq (G,H) , is the smallest integer k such that there exists such coloring φ . In this dissertation, we firstly present a brief summary on the results found in literature regarding Backbone Coloring. Then, we prove that if G is a planar graph without cycles of size four and F is a spanning forest of induced paths of G, then CBC2 (G,F) ≤ 7. Lastly, we show the following theorem : if G is a connected graph and k ≥ max {χ(G), χ(G)/ 2 +q} , then there exists a proper k-coloring c of G such that Gc,q is connected, where Gc,q is the subgraph of G such that V(Gc,q ) = V(G) and E(Gc,q ) is the set of edges vw ∈ E(G) that satisfy |c(v)−c(w)| ≥ q.Dado um grafo G = (V(G),E(G)) e um subgrafo H = (V(H),E(H)) de G, uma k-coloração q-backbone de (G,H) é uma função φ : V(G) → { 1 , 2 , 3 ,...,k} tal que, para toda aresta uv ∈ E(G) , temos |φ(u) − φ(v)| ≥ 1 e, para toda aresta uv ∈ E(H) , temos |φ(u) − φ(v)| ≥ q. O número cromático q-backbone de (G,H) , denotado por BBCq (G,H) , é o menor inteiro k tal que existe uma coloração φ como acima. Similarmente, uma k-coloração q-backbone circular de (G,H) é uma função φ : V(G) → { 1 , 2 , 3 ,...,k} tal que, para toda aresta uv ∈ E(G) , temos |φ(u) − φ(v)| ≥ 1 e, para toda aresta uv ∈ E(H) , temos k − q ≥ |φ(u) − φ(v)| ≥ q. O número cromático q-backbone circular de (G,H) , denotado por CBCq (G,H) , é o menor inteiro k tal que existe uma coloração φ como acima. Nesta dissertação, primeiramente apresentamos um breve sumário dos resultados relacionados a Coloração Backbone. Após isto, mostramos que se G é um grafo planar sem ciclos de tamanho quatro e F é uma floresta geradora de caminhos induzidos de G, então CBC2 (G,F) ≤ 7. Por fim, demonstramos o seguinte teorema: se G é um grafo conexo e k ≥ max {χ(G), χ(G)/ 2 + q} , então existe uma k-coloração c de G tal que Gc,q é conexo, onde Gc,q é o subgrafo de G tal que V(Gc,q ) e E(Gc,q ) é formado pelas arestas vw ∈ E(G) que satisfazem |c(v)−c(w)| ≥ q.Circular backbone coloring for graphs without cycles of size fourCircular backbone coloring for graphs without cycles of size fourinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesiscoloração de grafosnúmero cromáticocoloração backbone circulargrafos planares sem C4árvore como backbonegraph coloringchromatic numbercircular backbone coloringplanar graphs without C4tree backboneCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::MATEMATICA DISCRETA E COMBINATORIAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/5691816023955002https://orcid.org/0000-0001-7074-2753http://lattes.cnpq.br/7659965567201224https://orcid.org/0000-0001-8917-0564http://lattes.cnpq.br/21326146959014162023-12-20ORIGINAL2016_dis_aacezar.pdf2016_dis_aacezar.pdfdissertaçao alexandre azevedoapplication/pdf676173http://repositorio.ufc.br/bitstream/riufc/75456/1/2016_dis_aacezar.pdfff7ccef8fac81d2acb519938319c35b0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/75456/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/754562023-12-21 13:23:48.843oai:repositorio.ufc.br:riufc/75456Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-12-21T16:23:48Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Circular backbone coloring for graphs without cycles of size four |
| dc.title.en.pt_BR.fl_str_mv |
Circular backbone coloring for graphs without cycles of size four |
| title |
Circular backbone coloring for graphs without cycles of size four |
| spellingShingle |
Circular backbone coloring for graphs without cycles of size four Cezar, Alexandre Azevedo CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::MATEMATICA DISCRETA E COMBINATORIA coloração de grafos número cromático coloração backbone circular grafos planares sem C4 árvore como backbone graph coloring chromatic number circular backbone coloring planar graphs without C4 tree backbone |
| title_short |
Circular backbone coloring for graphs without cycles of size four |
| title_full |
Circular backbone coloring for graphs without cycles of size four |
| title_fullStr |
Circular backbone coloring for graphs without cycles of size four |
| title_full_unstemmed |
Circular backbone coloring for graphs without cycles of size four |
| title_sort |
Circular backbone coloring for graphs without cycles of size four |
| author |
Cezar, Alexandre Azevedo |
| author_facet |
Cezar, Alexandre Azevedo |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Silva, Ana Shirley Ferreira da |
| dc.contributor.author.fl_str_mv |
Cezar, Alexandre Azevedo |
| dc.contributor.advisor1.fl_str_mv |
Araújo, Júlio César Silva |
| contributor_str_mv |
Araújo, Júlio César Silva |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::MATEMATICA DISCRETA E COMBINATORIA |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::MATEMATICA DISCRETA E COMBINATORIA coloração de grafos número cromático coloração backbone circular grafos planares sem C4 árvore como backbone graph coloring chromatic number circular backbone coloring planar graphs without C4 tree backbone |
| dc.subject.ptbr.pt_BR.fl_str_mv |
coloração de grafos número cromático coloração backbone circular grafos planares sem C4 árvore como backbone |
| dc.subject.en.pt_BR.fl_str_mv |
graph coloring chromatic number circular backbone coloring planar graphs without C4 tree backbone |
| description |
Given a graph G = (V(G),E(G)) and a subgraph H = (V(H),E(H)) of G, a q-backbone k-coloring of (G,H) is a function φ : V(G) → { 1 , 2 , 3 ,...,k} such that, for every edge uv ∈ E(G) , we have |φ(u) − φ(v)| ≥ 1 and, for every edge uv ∈ E(H) , we have |φ(u) − φ(v)| ≥ q. The q-backbone chromatic number of (G,H) , denoted by BBCq (G,H) , is the smallest integer k such that there exists such coloring φ . Similarly, a circular q-backbone k-coloring of (G,H) is a function φ : V(G) → { 1 , 2 , 3 ,...,k} such that, for every edge uv ∈ E(G) , we have |φ(u) − φ(v)| ≥ 1 and, for every edge uv ∈ E(H) , we have k − q ≥ |φ(u) − φ(v)| ≥ q. The circular q-backbone chromatic number of (G,H) , denoted by CBCq (G,H) , is the smallest integer k such that there exists such coloring φ . In this dissertation, we firstly present a brief summary on the results found in literature regarding Backbone Coloring. Then, we prove that if G is a planar graph without cycles of size four and F is a spanning forest of induced paths of G, then CBC2 (G,F) ≤ 7. Lastly, we show the following theorem : if G is a connected graph and k ≥ max {χ(G), χ(G)/ 2 +q} , then there exists a proper k-coloring c of G such that Gc,q is connected, where Gc,q is the subgraph of G such that V(Gc,q ) = V(G) and E(Gc,q ) is the set of edges vw ∈ E(G) that satisfy |c(v)−c(w)| ≥ q. |
| publishDate |
2016 |
| dc.date.issued.fl_str_mv |
2016 |
| dc.date.accessioned.fl_str_mv |
2023-12-21T16:23:48Z |
| dc.date.available.fl_str_mv |
2023-12-21T16:23:48Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
CEZAR, Alexandre Azevedo. Circular backbone coloring for graphs without cycles of size four. 2016. 45 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/75456 |
| identifier_str_mv |
CEZAR, Alexandre Azevedo. Circular backbone coloring for graphs without cycles of size four. 2016. 45 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. |
| url |
http://repositorio.ufc.br/handle/riufc/75456 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/75456/1/2016_dis_aacezar.pdf http://repositorio.ufc.br/bitstream/riufc/75456/2/license.txt |
| bitstream.checksum.fl_str_mv |
ff7ccef8fac81d2acb519938319c35b0 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792971070570496 |