Colorações backbone em grafos com galáxias backbone
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/69637 |
Resumo: | A (proper) k-coloring of a graph G is a function φ: V (G) → {1, . . . , k} such that φ(u) ̸= φ(v), for all edge uv ∈ E(G). Given a graph G and a subgraph H ⊆ G, a q-backbone k-coloring of (G, H) is a k-coloring of G such that |φ(u)−φ(v)| ≥ q, for all edge uv ∈ E(H). The q-backbone chromatic number of (G, H), denoted by BBC q (G, H), is the smallest k ∈ Z such that there exists a q-backbone k-coloring of (G, H). A circular q-backbone k-coloring of (G, H) is a k-coloring of G such that q ≤ |φ(u) − φ(v)| ≤ k − q, for all edge uv ∈ E(H). The circular q-backbone chromatic number of (G, H), denoted by CBC q (G, H), is the smallest k ∈ Z such that there exists a circular q-backbone k-coloring of (G, H). In this dissertation, in addition to a brief presentation of the results related to Backbone Coloring, we present our contributions, among which we partially answer three problems proposed in (Havet, Frédéric et al., 2014): we show that if G is a planar graph with a spanning subgraph H, then CBC q (G, H) ≤ 2q + 2 when q ≥ 3 and H is a galaxy; CBC q (G, H) ≤ 2q when q ≥ 4 and H is a matching; and, CBC 3 (G, H) ≤ 7 when G does not have a pair of triangles with adjacent edges and H is a matching. Some of these results follow as a consequence of more general results we obtained about the parameter CBC q (G, H) for graph classes larger than the class of planar graphs. In addition, we show that it is possible to determine BBC q (G, H) and CBC q (G, H) in polynomial time when G has bounded treewidth graph and H is a matching of G. Finally, we present an error in the demonstration that BBC 2 (G, H) ≤ ∆(G) + 1, for any matching H in an arbitrary graph G (Miskuf, Jozef et al., 2010), and we present a demonstration for this result. |
| id |
UFC-7_016ed0e1b8a180759f90b267f40472cd |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/69637 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Araújo, Camila SenaAraújo, Júlio César Silva2022-12-06T10:28:58Z2022-12-06T10:28:58Z2021-03-11ARAÚJO, Camila Sena. Colorações backbone em grafos com galáxias backbone. 2021. 78 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/69637A (proper) k-coloring of a graph G is a function φ: V (G) → {1, . . . , k} such that φ(u) ̸= φ(v), for all edge uv ∈ E(G). Given a graph G and a subgraph H ⊆ G, a q-backbone k-coloring of (G, H) is a k-coloring of G such that |φ(u)−φ(v)| ≥ q, for all edge uv ∈ E(H). The q-backbone chromatic number of (G, H), denoted by BBC q (G, H), is the smallest k ∈ Z such that there exists a q-backbone k-coloring of (G, H). A circular q-backbone k-coloring of (G, H) is a k-coloring of G such that q ≤ |φ(u) − φ(v)| ≤ k − q, for all edge uv ∈ E(H). The circular q-backbone chromatic number of (G, H), denoted by CBC q (G, H), is the smallest k ∈ Z such that there exists a circular q-backbone k-coloring of (G, H). In this dissertation, in addition to a brief presentation of the results related to Backbone Coloring, we present our contributions, among which we partially answer three problems proposed in (Havet, Frédéric et al., 2014): we show that if G is a planar graph with a spanning subgraph H, then CBC q (G, H) ≤ 2q + 2 when q ≥ 3 and H is a galaxy; CBC q (G, H) ≤ 2q when q ≥ 4 and H is a matching; and, CBC 3 (G, H) ≤ 7 when G does not have a pair of triangles with adjacent edges and H is a matching. Some of these results follow as a consequence of more general results we obtained about the parameter CBC q (G, H) for graph classes larger than the class of planar graphs. In addition, we show that it is possible to determine BBC q (G, H) and CBC q (G, H) in polynomial time when G has bounded treewidth graph and H is a matching of G. Finally, we present an error in the demonstration that BBC 2 (G, H) ≤ ∆(G) + 1, for any matching H in an arbitrary graph G (Miskuf, Jozef et al., 2010), and we present a demonstration for this result.Uma k-coloração (própria) de um grafo G é uma função φ: V (G) → {1, . . . , k} tal que φ(u) ̸= φ(v), para toda aresta uv ∈ E(G). Dados um grafo G e um subgrafo H ⊆ G, uma k-coloração q-backbone de (G, H) é uma k-coloração de G onde |φ(u) − φ(v)| ≥ q, para toda aresta uv ∈ E(H). O número cromático q-backbone de (G, H), denotado por BBC q (G, H), é o menor k ∈ Z tal que existe uma k-coloração q-backbone de (G, H). Uma k-coloração q-backbone circular de (G, H) é uma k-coloração de G onde q ≤ |φ(u)−φ(v)| ≤ k − q, para toda aresta uv ∈ E(H). O número cromático q-backbone circular de (G, H), denotado por CBC q (G, H), é o menor k ∈ Z para o qual existe uma k-coloração q-backbone circular de (G, H). Nesta dissertação, além de uma breve exposição dos resultados relacionados à Coloração Backbone, apresentamos nossas contribuições, dentre as quais respondemos parcialmente três problemas propostos em (Havet, Frédéric et al., 2014): mostramos que se G é um grafo planar com um subgrafo gerador H, então CBC q (G, H) ≤ 2q + 2 quando q ≥ 3 e H é uma galáxia; CBC q (G, H) ≤ 2q quando q ≥ 4 e H é um emparelhamento; e, CBC 3 (G, H) ≤ 7 quando G não possui um par de triângulos com arestas adjacentes e H é um emparelhamento. Alguns desses resultados, seguem como consequência de resultados mais gerais que obtivemos acerca do parâmetro CBC q (G, H) para classes de grafos maiores do que a classe dos grafos planares. Além disso, mostramos que é possível determinar BBC q (G, H) e CBC q (G, H) em tempo polinomial quando G é um grafo de largura em árvore limitada e H é um emparelhamento de G. Finalmente, apresentamos um erro na demonstração de que BBC 2 (G, H) ≤ ∆(G) + 1, para qualquer emparelhamento H em um grafo G arbitrário (Miskuf, Jozef et al., 2010), e apresentamos uma demonstração para esse resultado.Coloração de grafosColoração backbone circularGrafos planaresGraph coloringCircular backbone coloringPlanar graphsColorações backbone em grafos com galáxias backboneBackbone coloring in graphs with backbone galaxiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2021_dis_csaraujo.pdf2021_dis_csaraujo.pdfdissertaçao camila senaapplication/pdf934074http://repositorio.ufc.br/bitstream/riufc/69637/3/2021_dis_csaraujo.pdfe133cd44d0e0d0e3fbe104b54968b474MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/69637/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/696372023-01-11 10:04:24.702oai:repositorio.ufc.br:riufc/69637Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-01-11T13:04:24Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Colorações backbone em grafos com galáxias backbone |
| dc.title.en.pt_BR.fl_str_mv |
Backbone coloring in graphs with backbone galaxies |
| title |
Colorações backbone em grafos com galáxias backbone |
| spellingShingle |
Colorações backbone em grafos com galáxias backbone Araújo, Camila Sena Coloração de grafos Coloração backbone circular Grafos planares Graph coloring Circular backbone coloring Planar graphs |
| title_short |
Colorações backbone em grafos com galáxias backbone |
| title_full |
Colorações backbone em grafos com galáxias backbone |
| title_fullStr |
Colorações backbone em grafos com galáxias backbone |
| title_full_unstemmed |
Colorações backbone em grafos com galáxias backbone |
| title_sort |
Colorações backbone em grafos com galáxias backbone |
| author |
Araújo, Camila Sena |
| author_facet |
Araújo, Camila Sena |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Araújo, Camila Sena |
| dc.contributor.advisor1.fl_str_mv |
Araújo, Júlio César Silva |
| contributor_str_mv |
Araújo, Júlio César Silva |
| dc.subject.por.fl_str_mv |
Coloração de grafos Coloração backbone circular Grafos planares Graph coloring Circular backbone coloring Planar graphs |
| topic |
Coloração de grafos Coloração backbone circular Grafos planares Graph coloring Circular backbone coloring Planar graphs |
| description |
A (proper) k-coloring of a graph G is a function φ: V (G) → {1, . . . , k} such that φ(u) ̸= φ(v), for all edge uv ∈ E(G). Given a graph G and a subgraph H ⊆ G, a q-backbone k-coloring of (G, H) is a k-coloring of G such that |φ(u)−φ(v)| ≥ q, for all edge uv ∈ E(H). The q-backbone chromatic number of (G, H), denoted by BBC q (G, H), is the smallest k ∈ Z such that there exists a q-backbone k-coloring of (G, H). A circular q-backbone k-coloring of (G, H) is a k-coloring of G such that q ≤ |φ(u) − φ(v)| ≤ k − q, for all edge uv ∈ E(H). The circular q-backbone chromatic number of (G, H), denoted by CBC q (G, H), is the smallest k ∈ Z such that there exists a circular q-backbone k-coloring of (G, H). In this dissertation, in addition to a brief presentation of the results related to Backbone Coloring, we present our contributions, among which we partially answer three problems proposed in (Havet, Frédéric et al., 2014): we show that if G is a planar graph with a spanning subgraph H, then CBC q (G, H) ≤ 2q + 2 when q ≥ 3 and H is a galaxy; CBC q (G, H) ≤ 2q when q ≥ 4 and H is a matching; and, CBC 3 (G, H) ≤ 7 when G does not have a pair of triangles with adjacent edges and H is a matching. Some of these results follow as a consequence of more general results we obtained about the parameter CBC q (G, H) for graph classes larger than the class of planar graphs. In addition, we show that it is possible to determine BBC q (G, H) and CBC q (G, H) in polynomial time when G has bounded treewidth graph and H is a matching of G. Finally, we present an error in the demonstration that BBC 2 (G, H) ≤ ∆(G) + 1, for any matching H in an arbitrary graph G (Miskuf, Jozef et al., 2010), and we present a demonstration for this result. |
| publishDate |
2021 |
| dc.date.issued.fl_str_mv |
2021-03-11 |
| dc.date.accessioned.fl_str_mv |
2022-12-06T10:28:58Z |
| dc.date.available.fl_str_mv |
2022-12-06T10:28:58Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
ARAÚJO, Camila Sena. Colorações backbone em grafos com galáxias backbone. 2021. 78 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/69637 |
| identifier_str_mv |
ARAÚJO, Camila Sena. Colorações backbone em grafos com galáxias backbone. 2021. 78 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021. |
| url |
http://www.repositorio.ufc.br/handle/riufc/69637 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/69637/3/2021_dis_csaraujo.pdf http://repositorio.ufc.br/bitstream/riufc/69637/4/license.txt |
| bitstream.checksum.fl_str_mv |
e133cd44d0e0d0e3fbe104b54968b474 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793395374751744 |