Colorações backbone em grafos com galáxias backbone

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Araújo, Camila Sena
Orientador(a): Araújo, Júlio César Silva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/69637
Resumo: A (proper) k-coloring of a graph G is a function φ: V (G) → {1, . . . , k} such that φ(u) ̸= φ(v), for all edge uv ∈ E(G). Given a graph G and a subgraph H ⊆ G, a q-backbone k-coloring of (G, H) is a k-coloring of G such that |φ(u)−φ(v)| ≥ q, for all edge uv ∈ E(H). The q-backbone chromatic number of (G, H), denoted by BBC q (G, H), is the smallest k ∈ Z such that there exists a q-backbone k-coloring of (G, H). A circular q-backbone k-coloring of (G, H) is a k-coloring of G such that q ≤ |φ(u) − φ(v)| ≤ k − q, for all edge uv ∈ E(H). The circular q-backbone chromatic number of (G, H), denoted by CBC q (G, H), is the smallest k ∈ Z such that there exists a circular q-backbone k-coloring of (G, H). In this dissertation, in addition to a brief presentation of the results related to Backbone Coloring, we present our contributions, among which we partially answer three problems proposed in (Havet, Frédéric et al., 2014): we show that if G is a planar graph with a spanning subgraph H, then CBC q (G, H) ≤ 2q + 2 when q ≥ 3 and H is a galaxy; CBC q (G, H) ≤ 2q when q ≥ 4 and H is a matching; and, CBC 3 (G, H) ≤ 7 when G does not have a pair of triangles with adjacent edges and H is a matching. Some of these results follow as a consequence of more general results we obtained about the parameter CBC q (G, H) for graph classes larger than the class of planar graphs. In addition, we show that it is possible to determine BBC q (G, H) and CBC q (G, H) in polynomial time when G has bounded treewidth graph and H is a matching of G. Finally, we present an error in the demonstration that BBC 2 (G, H) ≤ ∆(G) + 1, for any matching H in an arbitrary graph G (Miskuf, Jozef et al., 2010), and we present a demonstration for this result.
id UFC-7_016ed0e1b8a180759f90b267f40472cd
oai_identifier_str oai:repositorio.ufc.br:riufc/69637
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Araújo, Camila SenaAraújo, Júlio César Silva2022-12-06T10:28:58Z2022-12-06T10:28:58Z2021-03-11ARAÚJO, Camila Sena. Colorações backbone em grafos com galáxias backbone. 2021. 78 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/69637A (proper) k-coloring of a graph G is a function φ: V (G) → {1, . . . , k} such that φ(u) ̸= φ(v), for all edge uv ∈ E(G). Given a graph G and a subgraph H ⊆ G, a q-backbone k-coloring of (G, H) is a k-coloring of G such that |φ(u)−φ(v)| ≥ q, for all edge uv ∈ E(H). The q-backbone chromatic number of (G, H), denoted by BBC q (G, H), is the smallest k ∈ Z such that there exists a q-backbone k-coloring of (G, H). A circular q-backbone k-coloring of (G, H) is a k-coloring of G such that q ≤ |φ(u) − φ(v)| ≤ k − q, for all edge uv ∈ E(H). The circular q-backbone chromatic number of (G, H), denoted by CBC q (G, H), is the smallest k ∈ Z such that there exists a circular q-backbone k-coloring of (G, H). In this dissertation, in addition to a brief presentation of the results related to Backbone Coloring, we present our contributions, among which we partially answer three problems proposed in (Havet, Frédéric et al., 2014): we show that if G is a planar graph with a spanning subgraph H, then CBC q (G, H) ≤ 2q + 2 when q ≥ 3 and H is a galaxy; CBC q (G, H) ≤ 2q when q ≥ 4 and H is a matching; and, CBC 3 (G, H) ≤ 7 when G does not have a pair of triangles with adjacent edges and H is a matching. Some of these results follow as a consequence of more general results we obtained about the parameter CBC q (G, H) for graph classes larger than the class of planar graphs. In addition, we show that it is possible to determine BBC q (G, H) and CBC q (G, H) in polynomial time when G has bounded treewidth graph and H is a matching of G. Finally, we present an error in the demonstration that BBC 2 (G, H) ≤ ∆(G) + 1, for any matching H in an arbitrary graph G (Miskuf, Jozef et al., 2010), and we present a demonstration for this result.Uma k-coloração (própria) de um grafo G é uma função φ: V (G) → {1, . . . , k} tal que φ(u) ̸= φ(v), para toda aresta uv ∈ E(G). Dados um grafo G e um subgrafo H ⊆ G, uma k-coloração q-backbone de (G, H) é uma k-coloração de G onde |φ(u) − φ(v)| ≥ q, para toda aresta uv ∈ E(H). O número cromático q-backbone de (G, H), denotado por BBC q (G, H), é o menor k ∈ Z tal que existe uma k-coloração q-backbone de (G, H). Uma k-coloração q-backbone circular de (G, H) é uma k-coloração de G onde q ≤ |φ(u)−φ(v)| ≤ k − q, para toda aresta uv ∈ E(H). O número cromático q-backbone circular de (G, H), denotado por CBC q (G, H), é o menor k ∈ Z para o qual existe uma k-coloração q-backbone circular de (G, H). Nesta dissertação, além de uma breve exposição dos resultados relacionados à Coloração Backbone, apresentamos nossas contribuições, dentre as quais respondemos parcialmente três problemas propostos em (Havet, Frédéric et al., 2014): mostramos que se G é um grafo planar com um subgrafo gerador H, então CBC q (G, H) ≤ 2q + 2 quando q ≥ 3 e H é uma galáxia; CBC q (G, H) ≤ 2q quando q ≥ 4 e H é um emparelhamento; e, CBC 3 (G, H) ≤ 7 quando G não possui um par de triângulos com arestas adjacentes e H é um emparelhamento. Alguns desses resultados, seguem como consequência de resultados mais gerais que obtivemos acerca do parâmetro CBC q (G, H) para classes de grafos maiores do que a classe dos grafos planares. Além disso, mostramos que é possível determinar BBC q (G, H) e CBC q (G, H) em tempo polinomial quando G é um grafo de largura em árvore limitada e H é um emparelhamento de G. Finalmente, apresentamos um erro na demonstração de que BBC 2 (G, H) ≤ ∆(G) + 1, para qualquer emparelhamento H em um grafo G arbitrário (Miskuf, Jozef et al., 2010), e apresentamos uma demonstração para esse resultado.Coloração de grafosColoração backbone circularGrafos planaresGraph coloringCircular backbone coloringPlanar graphsColorações backbone em grafos com galáxias backboneBackbone coloring in graphs with backbone galaxiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2021_dis_csaraujo.pdf2021_dis_csaraujo.pdfdissertaçao camila senaapplication/pdf934074http://repositorio.ufc.br/bitstream/riufc/69637/3/2021_dis_csaraujo.pdfe133cd44d0e0d0e3fbe104b54968b474MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/69637/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/696372023-01-11 10:04:24.702oai:repositorio.ufc.br:riufc/69637Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-01-11T13:04:24Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Colorações backbone em grafos com galáxias backbone
dc.title.en.pt_BR.fl_str_mv Backbone coloring in graphs with backbone galaxies
title Colorações backbone em grafos com galáxias backbone
spellingShingle Colorações backbone em grafos com galáxias backbone
Araújo, Camila Sena
Coloração de grafos
Coloração backbone circular
Grafos planares
Graph coloring
Circular backbone coloring
Planar graphs
title_short Colorações backbone em grafos com galáxias backbone
title_full Colorações backbone em grafos com galáxias backbone
title_fullStr Colorações backbone em grafos com galáxias backbone
title_full_unstemmed Colorações backbone em grafos com galáxias backbone
title_sort Colorações backbone em grafos com galáxias backbone
author Araújo, Camila Sena
author_facet Araújo, Camila Sena
author_role author
dc.contributor.author.fl_str_mv Araújo, Camila Sena
dc.contributor.advisor1.fl_str_mv Araújo, Júlio César Silva
contributor_str_mv Araújo, Júlio César Silva
dc.subject.por.fl_str_mv Coloração de grafos
Coloração backbone circular
Grafos planares
Graph coloring
Circular backbone coloring
Planar graphs
topic Coloração de grafos
Coloração backbone circular
Grafos planares
Graph coloring
Circular backbone coloring
Planar graphs
description A (proper) k-coloring of a graph G is a function φ: V (G) → {1, . . . , k} such that φ(u) ̸= φ(v), for all edge uv ∈ E(G). Given a graph G and a subgraph H ⊆ G, a q-backbone k-coloring of (G, H) is a k-coloring of G such that |φ(u)−φ(v)| ≥ q, for all edge uv ∈ E(H). The q-backbone chromatic number of (G, H), denoted by BBC q (G, H), is the smallest k ∈ Z such that there exists a q-backbone k-coloring of (G, H). A circular q-backbone k-coloring of (G, H) is a k-coloring of G such that q ≤ |φ(u) − φ(v)| ≤ k − q, for all edge uv ∈ E(H). The circular q-backbone chromatic number of (G, H), denoted by CBC q (G, H), is the smallest k ∈ Z such that there exists a circular q-backbone k-coloring of (G, H). In this dissertation, in addition to a brief presentation of the results related to Backbone Coloring, we present our contributions, among which we partially answer three problems proposed in (Havet, Frédéric et al., 2014): we show that if G is a planar graph with a spanning subgraph H, then CBC q (G, H) ≤ 2q + 2 when q ≥ 3 and H is a galaxy; CBC q (G, H) ≤ 2q when q ≥ 4 and H is a matching; and, CBC 3 (G, H) ≤ 7 when G does not have a pair of triangles with adjacent edges and H is a matching. Some of these results follow as a consequence of more general results we obtained about the parameter CBC q (G, H) for graph classes larger than the class of planar graphs. In addition, we show that it is possible to determine BBC q (G, H) and CBC q (G, H) in polynomial time when G has bounded treewidth graph and H is a matching of G. Finally, we present an error in the demonstration that BBC 2 (G, H) ≤ ∆(G) + 1, for any matching H in an arbitrary graph G (Miskuf, Jozef et al., 2010), and we present a demonstration for this result.
publishDate 2021
dc.date.issued.fl_str_mv 2021-03-11
dc.date.accessioned.fl_str_mv 2022-12-06T10:28:58Z
dc.date.available.fl_str_mv 2022-12-06T10:28:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ARAÚJO, Camila Sena. Colorações backbone em grafos com galáxias backbone. 2021. 78 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/69637
identifier_str_mv ARAÚJO, Camila Sena. Colorações backbone em grafos com galáxias backbone. 2021. 78 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/69637
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/69637/3/2021_dis_csaraujo.pdf
http://repositorio.ufc.br/bitstream/riufc/69637/4/license.txt
bitstream.checksum.fl_str_mv e133cd44d0e0d0e3fbe104b54968b474
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793395374751744