Princípio de Harnack de fronteira para o operador p-Laplaciano
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/64142 |
Resumo: | The aim of this work is to present and prove the Boundary Harnack Principle for p-Laplacian in smooth domains. The author talks about the results of H. Aikawa and N. Shanmugalingam, presenting fundamental details previously omitted, in addition to also presenting preparatory and/or related results. For that, the properties of the p-Laplacian and the p-harmonic functions will be presented, among which are the Harnack Inequality and the Comparison Principle. Next, a geometrical characterization for C1.1 domains is proved in detail. More precisely, every bounded domain of class C1,1 satisfies the ball condition and vice versa. This is a well-known result, but it is almost never demonstrated. Finally, the author combines all the previous results with the Carleson Estimate to prove the Boundary Harnack Principle. This theorem guarantees that, in a bounded domain, any two p-harmonic functions that vanish in a part of the boundary of this domain deteriorate at the same rate as they approach a smaller portion of the boundary. His proof is based on the use of the inside/outside conditions of the ball, and the results cited above, to prove that the p-harmonic functions are uniformly comparable with the function d_D(.), which assumes, at each point x of D, the value of the distance from x to the boundary of D. |
| id |
UFC-7_4cd324dbc80c9a9bfe9e2ebaf5e56896 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/64142 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Sousa, José Wálisson Vieira deBraga, José Ederson Melo2022-02-23T20:48:04Z2022-02-23T20:48:04Z2020-11-12SOUSA, José Wálisson Vieira de. Princípio de Harnack de fronteira para o operador p-Laplaciano. 2020. 71 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020.http://www.repositorio.ufc.br/handle/riufc/64142The aim of this work is to present and prove the Boundary Harnack Principle for p-Laplacian in smooth domains. The author talks about the results of H. Aikawa and N. Shanmugalingam, presenting fundamental details previously omitted, in addition to also presenting preparatory and/or related results. For that, the properties of the p-Laplacian and the p-harmonic functions will be presented, among which are the Harnack Inequality and the Comparison Principle. Next, a geometrical characterization for C1.1 domains is proved in detail. More precisely, every bounded domain of class C1,1 satisfies the ball condition and vice versa. This is a well-known result, but it is almost never demonstrated. Finally, the author combines all the previous results with the Carleson Estimate to prove the Boundary Harnack Principle. This theorem guarantees that, in a bounded domain, any two p-harmonic functions that vanish in a part of the boundary of this domain deteriorate at the same rate as they approach a smaller portion of the boundary. His proof is based on the use of the inside/outside conditions of the ball, and the results cited above, to prove that the p-harmonic functions are uniformly comparable with the function d_D(.), which assumes, at each point x of D, the value of the distance from x to the boundary of D.O objetivo deste trabalho é apresentar, e provar, o Princípio de Harnack de Fronteira para o p-Laplaciano em domínios suaves. O autor disserta sobre o resultado de H. Aikawa e N. Shanmugalingam, apresentando detalhes fundamentais antes omitidos, além de também apresentar resultados preparatórios e/ou relacionados. Para isso serão apresentadas as propriedades do p-Laplaciano e das funções p-harmônicas, entre as quais estão a Desigualdade de Harnack e o Princípio da Comparação. Logo em seguida é provada, com detalhes, uma caracterização geométrica para domínios C1,1. Mais precisamente, todo domínio limitado de classe C1,1 satisfaz a condição da bola e vice-versa. Este é um resultado bastante conhecido, mas quase nunca demonstrado. Por fim, o autor junta todos os resultados anteriores com a Estimativa de Carleson para provar o Princípio de Harnack de Fronteira. Este teorema garante que, em um domínio limitado, quaisquer duas funções p-harmônicas, que se anulem em uma parte da fronteira deste domínio, se deterioram a mesma taxa à medida que se aproximam de uma porção menor da fronteira. Sua demonstração se baseia no uso das condições interior/exterior da bola, e nos resultados citados acima, para provar que as funções p-harmônicas são uniformemente comparáveis com a função d_D(.), que assume, em cada ponto x de D, o valor da distância de x até a fronteira de D.Equações diferenciais parciaisDesigualdade de Harnack de fronteirap-LaplacianoEstimativa de CarlesonCondição da bolaPartial differential equationsBorder Harnack inequalityCarleson's estimateBall conditionp-LaplacianPropriedade da esferaSphere propertyPrincípio de Harnack de fronteira para o operador p-LaplacianoBoundary Harnack principle for the p-Laplacian operatorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-82158http://repositorio.ufc.br/bitstream/riufc/64142/6/license.txte63c6ed4faa81e8b90d2fac75971a7d6MD56ORIGINAL2020_dis_jwvsousa.pdf2020_dis_jwvsousa.pdfDissertaçao Walissonapplication/pdf2695082http://repositorio.ufc.br/bitstream/riufc/64142/5/2020_dis_jwvsousa.pdf3cd93062d28f7552168d2e7841009581MD55riufc/641422022-09-13 14:05:30.853oai:repositorio.ufc.br:riufc/64142TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIA0KDQpBbyBjb25jb3JkYXIgY29tIGVzdGEgbGljZW7Dp2EsIHZvY8OqKHMpIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgb2JyYSBhcXVpIGRlc2NyaXRhIGNvbmNlZGUobSkgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBkZXBvc2l0YWRvIGVtIGZvcm1hdG8gaW1wcmVzc28sIGVsZXRyw7RuaWNvIG91IGVtIHF1YWxxdWVyIG91dHJvIG1laW8uIFZvY8OqIGNvbmNvcmRhKG0pIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCBjb252ZXJ0ZXIgbyBhcnF1aXZvIGRlcG9zaXRhZG8gYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4gVm9jw6oocykgdGFtYsOpbSBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGVzdGUgZGVww7NzaXRvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUvb3UgcHJlc2VydmHDp8Ojby4gVm9jw6ogZGVjbGFyYSBxdWUgYSBhcHJlc2VudGHDp8OjbyBkbyBzZXUgdHJhYmFsaG8gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6oocykgcG9kZShtKSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhKG0pIHF1ZSBvIGVudmlvIMOpIGRlIHNldSBjb25oZWNpbWVudG8gZSBuw6NvIGluZnJpbmdlIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG91dHJhIHBlc3NvYSBvdSBpbnN0aXR1acOnw6NvLiBDYXNvIG8gZG9jdW1lbnRvIGEgc2VyIGRlcG9zaXRhZG8gY29udGVuaGEgbWF0ZXJpYWwgcGFyYSBvIHF1YWwgdm9jw6oocykgbsOjbyBkZXTDqW0gYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGRlIGF1dG9yYWlzLCB2b2PDqihzKSBkZWNsYXJhKG0pIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSBlIHF1ZSBvcyBtYXRlcmlhaXMgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zLCBlc3TDo28gZGV2aWRhbWVudGUgaWRlbnRpZmljYWRvcyBlIHJlY29uaGVjaWRvcyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZGEgYXByZXNlbnRhw6fDo28uDQogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gDQpPIHJlcG9zaXTDs3JpbyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyBzZXUocykgbm9tZShzKSBjb21vIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkbyBkaXJlaXRvIGRlIGF1dG9yKGVzKSBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGUgZGVjbGFyYSBxdWUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4NClJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQy4NCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-09-13T17:05:30Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Princípio de Harnack de fronteira para o operador p-Laplaciano |
| dc.title.en.pt_BR.fl_str_mv |
Boundary Harnack principle for the p-Laplacian operator |
| title |
Princípio de Harnack de fronteira para o operador p-Laplaciano |
| spellingShingle |
Princípio de Harnack de fronteira para o operador p-Laplaciano Sousa, José Wálisson Vieira de Equações diferenciais parciais Desigualdade de Harnack de fronteira p-Laplaciano Estimativa de Carleson Condição da bola Partial differential equations Border Harnack inequality Carleson's estimate Ball condition p-Laplacian Propriedade da esfera Sphere property |
| title_short |
Princípio de Harnack de fronteira para o operador p-Laplaciano |
| title_full |
Princípio de Harnack de fronteira para o operador p-Laplaciano |
| title_fullStr |
Princípio de Harnack de fronteira para o operador p-Laplaciano |
| title_full_unstemmed |
Princípio de Harnack de fronteira para o operador p-Laplaciano |
| title_sort |
Princípio de Harnack de fronteira para o operador p-Laplaciano |
| author |
Sousa, José Wálisson Vieira de |
| author_facet |
Sousa, José Wálisson Vieira de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Sousa, José Wálisson Vieira de |
| dc.contributor.advisor1.fl_str_mv |
Braga, José Ederson Melo |
| contributor_str_mv |
Braga, José Ederson Melo |
| dc.subject.por.fl_str_mv |
Equações diferenciais parciais Desigualdade de Harnack de fronteira p-Laplaciano Estimativa de Carleson Condição da bola Partial differential equations Border Harnack inequality Carleson's estimate Ball condition p-Laplacian Propriedade da esfera Sphere property |
| topic |
Equações diferenciais parciais Desigualdade de Harnack de fronteira p-Laplaciano Estimativa de Carleson Condição da bola Partial differential equations Border Harnack inequality Carleson's estimate Ball condition p-Laplacian Propriedade da esfera Sphere property |
| description |
The aim of this work is to present and prove the Boundary Harnack Principle for p-Laplacian in smooth domains. The author talks about the results of H. Aikawa and N. Shanmugalingam, presenting fundamental details previously omitted, in addition to also presenting preparatory and/or related results. For that, the properties of the p-Laplacian and the p-harmonic functions will be presented, among which are the Harnack Inequality and the Comparison Principle. Next, a geometrical characterization for C1.1 domains is proved in detail. More precisely, every bounded domain of class C1,1 satisfies the ball condition and vice versa. This is a well-known result, but it is almost never demonstrated. Finally, the author combines all the previous results with the Carleson Estimate to prove the Boundary Harnack Principle. This theorem guarantees that, in a bounded domain, any two p-harmonic functions that vanish in a part of the boundary of this domain deteriorate at the same rate as they approach a smaller portion of the boundary. His proof is based on the use of the inside/outside conditions of the ball, and the results cited above, to prove that the p-harmonic functions are uniformly comparable with the function d_D(.), which assumes, at each point x of D, the value of the distance from x to the boundary of D. |
| publishDate |
2020 |
| dc.date.issued.fl_str_mv |
2020-11-12 |
| dc.date.accessioned.fl_str_mv |
2022-02-23T20:48:04Z |
| dc.date.available.fl_str_mv |
2022-02-23T20:48:04Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SOUSA, José Wálisson Vieira de. Princípio de Harnack de fronteira para o operador p-Laplaciano. 2020. 71 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/64142 |
| identifier_str_mv |
SOUSA, José Wálisson Vieira de. Princípio de Harnack de fronteira para o operador p-Laplaciano. 2020. 71 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2020. |
| url |
http://www.repositorio.ufc.br/handle/riufc/64142 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/64142/6/license.txt http://repositorio.ufc.br/bitstream/riufc/64142/5/2020_dis_jwvsousa.pdf |
| bitstream.checksum.fl_str_mv |
e63c6ed4faa81e8b90d2fac75971a7d6 3cd93062d28f7552168d2e7841009581 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793098533371904 |