Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/22559 |
Resumo: | The main of this work was to study properties of Riemannian when subjected to conditions on Bakry-Émery-Ricci tensor. Essentially we study two cases. In the first case, motivated by the work of Barros and Ribeiro Jr. (2014), He, Petersen and Wylie (2012) and Miao and Tam (2011), was introduced generalized m-quasi-Einstein metrics compact with boundary, where we get a result that classify these metrics; more specifically, assuming that gradient field of the exponential of potential function is a conformal vector field, we obtain that this must be a geodesic ball in a simply connected space form. That we get some results that implies when these are trivial metrics. In the second case, we work the Bakry-Émery-Ricci tensor bounded bellow, initially in a compact Riemannian, with or without boundary, and later on balls in complete Riemannian. With this study, we obtain gradient estimates for eigenfunctions of V-Laplacian operator, that generalize results of (Li, 2005) and (Li, 2015). Finally, as consequence theses results, we show an Harnack’s inequality. |
| id |
UFC-7_287faeaef602ec0258f0f4965f76e665 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/22559 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Silva, Antonio Kelson Vieira daBarros, Abdênago Alves de2017-04-24T11:14:14Z2017-04-24T11:14:14Z2015-08-17SILVA, A. K. V. Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo. 2017. 40 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017.http://www.repositorio.ufc.br/handle/riufc/22559The main of this work was to study properties of Riemannian when subjected to conditions on Bakry-Émery-Ricci tensor. Essentially we study two cases. In the first case, motivated by the work of Barros and Ribeiro Jr. (2014), He, Petersen and Wylie (2012) and Miao and Tam (2011), was introduced generalized m-quasi-Einstein metrics compact with boundary, where we get a result that classify these metrics; more specifically, assuming that gradient field of the exponential of potential function is a conformal vector field, we obtain that this must be a geodesic ball in a simply connected space form. That we get some results that implies when these are trivial metrics. In the second case, we work the Bakry-Émery-Ricci tensor bounded bellow, initially in a compact Riemannian, with or without boundary, and later on balls in complete Riemannian. With this study, we obtain gradient estimates for eigenfunctions of V-Laplacian operator, that generalize results of (Li, 2005) and (Li, 2015). Finally, as consequence theses results, we show an Harnack’s inequality.Este trabalho tem como principal objetivo estudar propriedades de variedades Riemannianas quando submetidas a condições sobre tensores de Ricci-Bakry-Émery. Essencialmente estudamos dois casos. No primeiro caso, motivados pelos trabalhos de Barros e Ribeiro Jr (2014), He, Petersen e Wylie (2012) e por Miao e Tam (2011), introduzimos métricas m-quasi-Einstein generalizadas compactas com bordo, donde obtemos um resultado que garante uma classificação para estas métricas; mais precisamente, assumindo que o gradiente da exponencial da função potencial é um campo conforme, obtemos que aquela deve ser uma bola geodésica de uma forma espacial simplesmente conexa. Disso, obtemos alguns resultados em que garantimos quando estas métricas são triviais. No segundo caso, trabalhos o tensor de Ricci-Bakry-Émery limitado por baixo, inicialmente, em variedades Riemannianas compactas, com bordo ou sem bordo, e posteriormente, sobre bolas em variedades Riemannianas completas. Com esse estudo, obtivemos estimativas do gradiente para autofunções do operador V-Laplaciano, generalizando resultados de (Li, 2005) e (Li, 2015). Finalmente, como consequências desses resultados, exibimos uma desigualdade de Harnack.Métricas m-quasi-Einstein generalizadasOperador V-LaplacianoDesigualdade de HarnackGeneralized m-quasi-Einstein metricsV-Laplacian operatorHarnack’s inequalityEstimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordoGradient estimates for V-Laplaciane auto-functions and compact generalized m-quasi-Einstein metrics with onboardinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/22559/8/license.txt8a4605be74aa9ea9d79846c1fba20a33MD58ORIGINAL2015_tese_akvsilva.pdf2015_tese_akvsilva.pdf2017_tese_akvsilvaapplication/pdf322112http://repositorio.ufc.br/bitstream/riufc/22559/7/2015_tese_akvsilva.pdfe3087741f0e7bb8b966418fb10253c7bMD57riufc/225592019-01-04 10:29:07.791oai:repositorio.ufc.br:riufc/22559Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-01-04T13:29:07Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo |
| dc.title.en.pt_BR.fl_str_mv |
Gradient estimates for V-Laplaciane auto-functions and compact generalized m-quasi-Einstein metrics with onboard |
| title |
Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo |
| spellingShingle |
Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo Silva, Antonio Kelson Vieira da Métricas m-quasi-Einstein generalizadas Operador V-Laplaciano Desigualdade de Harnack Generalized m-quasi-Einstein metrics V-Laplacian operator Harnack’s inequality |
| title_short |
Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo |
| title_full |
Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo |
| title_fullStr |
Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo |
| title_full_unstemmed |
Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo |
| title_sort |
Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo |
| author |
Silva, Antonio Kelson Vieira da |
| author_facet |
Silva, Antonio Kelson Vieira da |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Silva, Antonio Kelson Vieira da |
| dc.contributor.advisor1.fl_str_mv |
Barros, Abdênago Alves de |
| contributor_str_mv |
Barros, Abdênago Alves de |
| dc.subject.por.fl_str_mv |
Métricas m-quasi-Einstein generalizadas Operador V-Laplaciano Desigualdade de Harnack Generalized m-quasi-Einstein metrics V-Laplacian operator Harnack’s inequality |
| topic |
Métricas m-quasi-Einstein generalizadas Operador V-Laplaciano Desigualdade de Harnack Generalized m-quasi-Einstein metrics V-Laplacian operator Harnack’s inequality |
| description |
The main of this work was to study properties of Riemannian when subjected to conditions on Bakry-Émery-Ricci tensor. Essentially we study two cases. In the first case, motivated by the work of Barros and Ribeiro Jr. (2014), He, Petersen and Wylie (2012) and Miao and Tam (2011), was introduced generalized m-quasi-Einstein metrics compact with boundary, where we get a result that classify these metrics; more specifically, assuming that gradient field of the exponential of potential function is a conformal vector field, we obtain that this must be a geodesic ball in a simply connected space form. That we get some results that implies when these are trivial metrics. In the second case, we work the Bakry-Émery-Ricci tensor bounded bellow, initially in a compact Riemannian, with or without boundary, and later on balls in complete Riemannian. With this study, we obtain gradient estimates for eigenfunctions of V-Laplacian operator, that generalize results of (Li, 2005) and (Li, 2015). Finally, as consequence theses results, we show an Harnack’s inequality. |
| publishDate |
2015 |
| dc.date.issued.fl_str_mv |
2015-08-17 |
| dc.date.accessioned.fl_str_mv |
2017-04-24T11:14:14Z |
| dc.date.available.fl_str_mv |
2017-04-24T11:14:14Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SILVA, A. K. V. Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo. 2017. 40 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/22559 |
| identifier_str_mv |
SILVA, A. K. V. Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo. 2017. 40 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. |
| url |
http://www.repositorio.ufc.br/handle/riufc/22559 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/22559/8/license.txt http://repositorio.ufc.br/bitstream/riufc/22559/7/2015_tese_akvsilva.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 e3087741f0e7bb8b966418fb10253c7b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793208119001088 |