Sobre estabilidade de hipersuperfícies com curvatura escalar nula.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Farias Filho, Francisco Silvio Bernardo de
Orientador(a): Colares, Antonio Gervasio
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/34725
Resumo: We will prove that there are no complete and stable hypersurface of R4 with zero scalar curvature, polynomial volume growth and such that -K H3 ≥ c> 0 at any point, for some constant c> 0, where K denotes the curvature of Gauss-Kronecker and H denotes the mean curvature of the immersion x: M3 → R4, where Mn is Riemannian variety. Our second result is a Bernstein type, which guarantees that there are no complete graphs of R4 with zero scalar curvature and such that -K H3 ≥ c> 0 at every point. Finally, it will be shown that if there is a stable hypersurface with zero scalar curvature and -K H3 ≥ c> 0 at all points, that is, with volume growth higher than the polynomial, then its tubular neighborhood is not plunged by soft rays.
id UFC-7_5a15d9ca7ccce4db504ce02806b3554d
oai_identifier_str oai:repositorio.ufc.br:riufc/34725
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Farias Filho, Francisco Silvio Bernardo deColares, Antonio Gervasio2018-08-10T17:14:07Z2018-08-10T17:14:07Z2018-07-16FARIAS FILHO, Francisco Silvio Bernardo de. Sobre estabilidade de hipersuperfícies com curvatura escalar nula. 2018. 128 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/34725We will prove that there are no complete and stable hypersurface of R4 with zero scalar curvature, polynomial volume growth and such that -K H3 ≥ c> 0 at any point, for some constant c> 0, where K denotes the curvature of Gauss-Kronecker and H denotes the mean curvature of the immersion x: M3 → R4, where Mn is Riemannian variety. Our second result is a Bernstein type, which guarantees that there are no complete graphs of R4 with zero scalar curvature and such that -K H3 ≥ c> 0 at every point. Finally, it will be shown that if there is a stable hypersurface with zero scalar curvature and -K H3 ≥ c> 0 at all points, that is, with volume growth higher than the polynomial, then its tubular neighborhood is not plunged by soft rays.Provaremos que não existem hipersuperfícies completas e estáveis de R4 com curvatura escalar nula, crescimento de volume polinomial e tal que −K H3 ≥ c > 0 em todo ponto, para alguma constante c > 0, onde K denota a curvatura de Gauss-Kronecker e H denota a curvatura média da imersão x : M3 → R4 , onde Mn é variedade riemanniana. Nosso segundo resultado é do tipo Bernstein, o qual garante que não existem gráficos inteiros de R4 com curvatura escalar nula e tais que −K H3 ≥ c > 0 em todo ponto. Por fim, será mostrado que, se existe uma hipersuperfície estável com curvatura escalar nula e −K H3 ≥ c > 0 em todo ponto, isto é, com crescimento de volume superior ao polinomial, então sua vizinhança tubular não é mergulhada por raios suaves.Curvatura escalarCurvatura de Gauss-KroneckerCurvatura médiaEstabilidadeGráficosVizinhança tubularVolumeScalar curvatureGauss-Kronecker BendMean curvatureStabilityGraphicsTubular neighborhoodVolumeSobre estabilidade de hipersuperfícies com curvatura escalar nula.On stability of hypersurfaces with zero scalar curvature.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2018_dis_fsbfariasfilho.pdf2018_dis_fsbfariasfilho.pdfapplication/pdf2932789http://repositorio.ufc.br/bitstream/riufc/34725/1/2018_dis_fsbfariasfilho.pdf6ee6814d40baf572f245309c5b7c3a48MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81812http://repositorio.ufc.br/bitstream/riufc/34725/2/license.txt9351db63ea91b32e01910aaf21c0fd0aMD52riufc/347252019-01-04 08:31:38.469oai:repositorio.ufc.br:riufc/34725w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLCBhbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQ0KbGljZW7Dp2EgYXRlbnRhbWVudGUuIENhc28gbmVjZXNzaXRlIGRlIGFsZ3VtIGVzY2xhcmVjaW1lbnRvIGVudHJlIGVtIGNvbnRhdG8gYXRyYXbDqXMgZGU6IHJlcG9zaXRvcmlvQHVmYy5iciBvdSAoODUpMzM2Ni05NTA4Lg0KDQpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQ0KDQpBbyBhc3NpbmFyIGUgZW50cmVnYXIgZXN0YSBsaWNlbsOnYSwgby9hIFNyLi9TcmEuIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpOg0KDQphKSBDb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGFiYWl4byksIGNvbXVuaWNhciBlL291DQpkaXN0cmlidWlyIG8gZG9jdW1lbnRvIGVudHJlZ3VlIChpbmNsdWluZG8gbyByZXN1bW8vYWJzdHJhY3QpIGVtIGZvcm1hdG8gZGlnaXRhbCBvdSBpbXByZXNzbyBlIGVtIHF1YWxxdWVyIG1laW8uDQoNCmIpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYQ0KdGFtYsOpbSBxdWUgYSBlbnRyZWdhIGRvIGRvY3VtZW50byBuw6NvIGluZnJpbmdlLCB0YW50byBxdWFudG8gbGhlIMOpIHBvc3PDrXZlbCBzYWJlciwgb3MgZGlyZWl0b3MgZGUgcXVhbHF1ZXIgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlLg0KDQpjKSBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSBjb250w6ltIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcw0KZGlyZWl0b3MgZGUgYXV0b3IgcGFyYSBjb25jZWRlciDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6Egb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBjdWpvcyBkaXJlaXRvcyBzw6NvIGRlDQp0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLg0KDQpTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBiYXNlYWRvIGVtIHRyYWJhbGhvIGZpbmFuY2lhZG8gb3UgYXBvaWFkbyBwb3Igb3V0cmEgaW5zdGl0dWnDp8OjbyBxdWUgbsOjbyBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZGVjbGFyYSBxdWUNCmN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UgYWNvcmRvLg0KDQpBIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBzZXUgKHMpIG5vbWUgKHMpIGNvbW8gbyAocykgYXV0b3IgKGVzKSBvdSBkZXRlbnRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8NCmVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuDQoNCg0KRepositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-01-04T11:31:38Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Sobre estabilidade de hipersuperfícies com curvatura escalar nula.
dc.title.en.pt_BR.fl_str_mv On stability of hypersurfaces with zero scalar curvature.
title Sobre estabilidade de hipersuperfícies com curvatura escalar nula.
spellingShingle Sobre estabilidade de hipersuperfícies com curvatura escalar nula.
Farias Filho, Francisco Silvio Bernardo de
Curvatura escalar
Curvatura de Gauss-Kronecker
Curvatura média
Estabilidade
Gráficos
Vizinhança tubular
Volume
Scalar curvature
Gauss-Kronecker Bend
Mean curvature
Stability
Graphics
Tubular neighborhood
Volume
title_short Sobre estabilidade de hipersuperfícies com curvatura escalar nula.
title_full Sobre estabilidade de hipersuperfícies com curvatura escalar nula.
title_fullStr Sobre estabilidade de hipersuperfícies com curvatura escalar nula.
title_full_unstemmed Sobre estabilidade de hipersuperfícies com curvatura escalar nula.
title_sort Sobre estabilidade de hipersuperfícies com curvatura escalar nula.
author Farias Filho, Francisco Silvio Bernardo de
author_facet Farias Filho, Francisco Silvio Bernardo de
author_role author
dc.contributor.author.fl_str_mv Farias Filho, Francisco Silvio Bernardo de
dc.contributor.advisor1.fl_str_mv Colares, Antonio Gervasio
contributor_str_mv Colares, Antonio Gervasio
dc.subject.por.fl_str_mv Curvatura escalar
Curvatura de Gauss-Kronecker
Curvatura média
Estabilidade
Gráficos
Vizinhança tubular
Volume
Scalar curvature
Gauss-Kronecker Bend
Mean curvature
Stability
Graphics
Tubular neighborhood
Volume
topic Curvatura escalar
Curvatura de Gauss-Kronecker
Curvatura média
Estabilidade
Gráficos
Vizinhança tubular
Volume
Scalar curvature
Gauss-Kronecker Bend
Mean curvature
Stability
Graphics
Tubular neighborhood
Volume
description We will prove that there are no complete and stable hypersurface of R4 with zero scalar curvature, polynomial volume growth and such that -K H3 ≥ c> 0 at any point, for some constant c> 0, where K denotes the curvature of Gauss-Kronecker and H denotes the mean curvature of the immersion x: M3 → R4, where Mn is Riemannian variety. Our second result is a Bernstein type, which guarantees that there are no complete graphs of R4 with zero scalar curvature and such that -K H3 ≥ c> 0 at every point. Finally, it will be shown that if there is a stable hypersurface with zero scalar curvature and -K H3 ≥ c> 0 at all points, that is, with volume growth higher than the polynomial, then its tubular neighborhood is not plunged by soft rays.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-08-10T17:14:07Z
dc.date.available.fl_str_mv 2018-08-10T17:14:07Z
dc.date.issued.fl_str_mv 2018-07-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FARIAS FILHO, Francisco Silvio Bernardo de. Sobre estabilidade de hipersuperfícies com curvatura escalar nula. 2018. 128 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/34725
identifier_str_mv FARIAS FILHO, Francisco Silvio Bernardo de. Sobre estabilidade de hipersuperfícies com curvatura escalar nula. 2018. 128 f. Dissertação (Mestrado Acadêmico em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.
url http://www.repositorio.ufc.br/handle/riufc/34725
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/34725/1/2018_dis_fsbfariasfilho.pdf
http://repositorio.ufc.br/bitstream/riufc/34725/2/license.txt
bitstream.checksum.fl_str_mv 6ee6814d40baf572f245309c5b7c3a48
9351db63ea91b32e01910aaf21c0fd0a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793287437484032