Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/79052 |
Resumo: | COVID-19 infections and their Post-Acute Sequelae of COVID-19 (SPAC) represent a global health crisis. Associated with this, COVID-19 has had a profound impact on the health of people around the world. In addition to the direct consequences of virus infection, such as serious illness and death, there has been a significant increase in levels of stress, anxiety and depression due to fear of the disease, social isolation and uncertainty about the future. Futhermore, understanding the risks associated with COVID-19, its sequelae and its biological mechanisms has not yet been fully established. Given this gap, it is crucial to develop an extractive and predictive approach to support identifying both COVID-19 and its possible sequelae. Therefore, the present study proposes a methodology to carry out this detection and prediction using Artificial Intelligence (AI) techniques related to Machine Learning (ML). This approach involves the utilization of several classifiers, including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), neural network Multilayer Perceptron (MLP), K — Nearest Neighbors (KNN) and Light Gradient Boosting Machine (LGBM). In addition to their individual constructions, these classifiers were combined, forming a new ensemble classifier. These models are applied to two different databases. The first refers to the detection of COVID-19, containing 400 positive records and 691 negative records, with 16 variables. The second set of data is aimed at SPACs, covering examinations of patients with different conditions: 174 with Hypertension, 181 with Asthma, 182 with Congestive Heart Failure and 190 with Coronary Artery Disease. The results obtained highlight the effectiveness of the proposed approach, with an accuracy result of 97% for the first database and an average accuracy of 88,75% for the second database. These accuracy results demonstrate the model’s ability to predict both the presence of COVID-19 and its possible sequelae, providing a valuable tool to support clinical practice and public health. |
| id |
UFC-7_62b71783e9f9308543140c8738ff1b64 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/79052 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Farrapo, Ruann Campos de CastroPaula Junior, Iális Cavalcante deAmora, Márcio André Baima2024-12-02T19:40:27Z2024-12-02T19:40:27Z2024FARRAPO, Ruann Campos de Castro. Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda. 2024. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e de Computação), Universidade Federal do Ceará, Campus de Sobral, 2024.http://repositorio.ufc.br/handle/riufc/79052COVID-19 infections and their Post-Acute Sequelae of COVID-19 (SPAC) represent a global health crisis. Associated with this, COVID-19 has had a profound impact on the health of people around the world. In addition to the direct consequences of virus infection, such as serious illness and death, there has been a significant increase in levels of stress, anxiety and depression due to fear of the disease, social isolation and uncertainty about the future. Futhermore, understanding the risks associated with COVID-19, its sequelae and its biological mechanisms has not yet been fully established. Given this gap, it is crucial to develop an extractive and predictive approach to support identifying both COVID-19 and its possible sequelae. Therefore, the present study proposes a methodology to carry out this detection and prediction using Artificial Intelligence (AI) techniques related to Machine Learning (ML). This approach involves the utilization of several classifiers, including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), neural network Multilayer Perceptron (MLP), K — Nearest Neighbors (KNN) and Light Gradient Boosting Machine (LGBM). In addition to their individual constructions, these classifiers were combined, forming a new ensemble classifier. These models are applied to two different databases. The first refers to the detection of COVID-19, containing 400 positive records and 691 negative records, with 16 variables. The second set of data is aimed at SPACs, covering examinations of patients with different conditions: 174 with Hypertension, 181 with Asthma, 182 with Congestive Heart Failure and 190 with Coronary Artery Disease. The results obtained highlight the effectiveness of the proposed approach, with an accuracy result of 97% for the first database and an average accuracy of 88,75% for the second database. These accuracy results demonstrate the model’s ability to predict both the presence of COVID-19 and its possible sequelae, providing a valuable tool to support clinical practice and public health.As infecções por COVID-19 e suas Sequelas Pós-Agudas da COVID-19 (SPAC) representam uma crise global de saúde. Associado a isso, a COVID-19 teve um impacto profundo na saúde das pessoas em todo o mundo. Além das consequências diretas da infecção pelo vírus, como doenças graves e mortes, houve um aumento significativo nos níveis de estresse, ansiedade e depressão devido ao medo da doença, isolamento social e incertezas sobre o futuro. Além disso, a compreensão dos riscos associados à COVID-19, suas sequelas e seus mecanismos biológicos ainda não estão totalmente estabelecidos. Diante dessa lacuna, é crucial desenvolver uma abordagem extrativa e preditiva para o suporte a identificar tanto a COVID-19 quanto suas possíveis sequelas. Assim, o presente estudo propõe uma metodologia para realizar essa detecção e predição utilizando técnicas de Inteligência Artificial (IA) relacionadas com o Machine Learning (ML). Essa abordagem envolve a utilização de vários classificadores, sendo eles o Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), rede neural Multilayer Perceptron (MLP), K — Nearest Neighbors (KNN) e Light Gradient Boosting Machine (LGBM). Além das suas construções individuais, esses classificadores foram combinados, formando um novo classificador ensemble. Esses modelos são aplicados em duas bases de dados distintas. A primeira refere-se à detecção de COVID-19, contendo 400 registros positivos e 691 negativos, com 16 variáveis. O segundo conjunto de dados é voltado para SPAC’s, abrangendo exames de pacientes com diferentes condições: 174 com Hipertensão, 181 com Asma, 182 com Insuficiência Cardíaca Congestiva e 190 com Doença Arterial Coronária. Os resultados obtidos destacam a eficácia da abordagem proposta, com resultado de acurácia nos ensembles construídos, de 97% para a primeira base de dados e com média de acurácia das 4 SPAC’s de 88,75% para a segunda base. Esses resultados de acurácia demonstram a capacidade do modelo de predizer tanto a presença da COVID-19 quanto suas possíveis sequelas, fornecendo uma ferramenta valiosa para o suporte a prática clínica e a saúde pública.Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-agudainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisDetecção COVID-19Sequelas da COVID-19Extração de característicasPrediçãoMachine learningInteligência artificialCOVID-19 detectionCOVID-19 sequelsFeature extractionPredictionMachine learningMachine learningCNPQ::ENGENHARIASinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/7476774178484570https://orcid.org/0000-0001-5046-8718http://lattes.cnpq.br/9606593375708738https://orcid.org/0000-0002-2374-4817http://lattes.cnpq.br/50224537484094322024ORIGINAL2024_dis_rccfarrapo.pdf2024_dis_rccfarrapo.pdfapplication/pdf766754http://repositorio.ufc.br/bitstream/riufc/79052/3/2024_dis_rccfarrapo.pdf178b87dd3b312758132af83a34983260MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/79052/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/790522024-12-02 16:40:31.043oai:repositorio.ufc.br:riufc/79052Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-12-02T19:40:31Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda |
| title |
Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda |
| spellingShingle |
Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda Farrapo, Ruann Campos de Castro CNPQ::ENGENHARIAS Detecção COVID-19 Sequelas da COVID-19 Extração de características Predição Machine learning Inteligência artificial COVID-19 detection COVID-19 sequels Feature extraction Prediction Machine learning Machine learning |
| title_short |
Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda |
| title_full |
Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda |
| title_fullStr |
Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda |
| title_full_unstemmed |
Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda |
| title_sort |
Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda |
| author |
Farrapo, Ruann Campos de Castro |
| author_facet |
Farrapo, Ruann Campos de Castro |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Paula Junior, Iális Cavalcante de |
| dc.contributor.author.fl_str_mv |
Farrapo, Ruann Campos de Castro |
| dc.contributor.advisor1.fl_str_mv |
Amora, Márcio André Baima |
| contributor_str_mv |
Amora, Márcio André Baima |
| dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS |
| topic |
CNPQ::ENGENHARIAS Detecção COVID-19 Sequelas da COVID-19 Extração de características Predição Machine learning Inteligência artificial COVID-19 detection COVID-19 sequels Feature extraction Prediction Machine learning Machine learning |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Detecção COVID-19 Sequelas da COVID-19 Extração de características Predição Machine learning Inteligência artificial |
| dc.subject.en.pt_BR.fl_str_mv |
COVID-19 detection COVID-19 sequels Feature extraction Prediction Machine learning Machine learning |
| description |
COVID-19 infections and their Post-Acute Sequelae of COVID-19 (SPAC) represent a global health crisis. Associated with this, COVID-19 has had a profound impact on the health of people around the world. In addition to the direct consequences of virus infection, such as serious illness and death, there has been a significant increase in levels of stress, anxiety and depression due to fear of the disease, social isolation and uncertainty about the future. Futhermore, understanding the risks associated with COVID-19, its sequelae and its biological mechanisms has not yet been fully established. Given this gap, it is crucial to develop an extractive and predictive approach to support identifying both COVID-19 and its possible sequelae. Therefore, the present study proposes a methodology to carry out this detection and prediction using Artificial Intelligence (AI) techniques related to Machine Learning (ML). This approach involves the utilization of several classifiers, including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), neural network Multilayer Perceptron (MLP), K — Nearest Neighbors (KNN) and Light Gradient Boosting Machine (LGBM). In addition to their individual constructions, these classifiers were combined, forming a new ensemble classifier. These models are applied to two different databases. The first refers to the detection of COVID-19, containing 400 positive records and 691 negative records, with 16 variables. The second set of data is aimed at SPACs, covering examinations of patients with different conditions: 174 with Hypertension, 181 with Asthma, 182 with Congestive Heart Failure and 190 with Coronary Artery Disease. The results obtained highlight the effectiveness of the proposed approach, with an accuracy result of 97% for the first database and an average accuracy of 88,75% for the second database. These accuracy results demonstrate the model’s ability to predict both the presence of COVID-19 and its possible sequelae, providing a valuable tool to support clinical practice and public health. |
| publishDate |
2024 |
| dc.date.accessioned.fl_str_mv |
2024-12-02T19:40:27Z |
| dc.date.available.fl_str_mv |
2024-12-02T19:40:27Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
FARRAPO, Ruann Campos de Castro. Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda. 2024. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e de Computação), Universidade Federal do Ceará, Campus de Sobral, 2024. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/79052 |
| identifier_str_mv |
FARRAPO, Ruann Campos de Castro. Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda. 2024. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e de Computação), Universidade Federal do Ceará, Campus de Sobral, 2024. |
| url |
http://repositorio.ufc.br/handle/riufc/79052 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/79052/3/2024_dis_rccfarrapo.pdf http://repositorio.ufc.br/bitstream/riufc/79052/4/license.txt |
| bitstream.checksum.fl_str_mv |
178b87dd3b312758132af83a34983260 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793001719398400 |