Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Farrapo, Ruann Campos de Castro
Orientador(a): Amora, Márcio André Baima
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/79052
Resumo: COVID-19 infections and their Post-Acute Sequelae of COVID-19 (SPAC) represent a global health crisis. Associated with this, COVID-19 has had a profound impact on the health of people around the world. In addition to the direct consequences of virus infection, such as serious illness and death, there has been a significant increase in levels of stress, anxiety and depression due to fear of the disease, social isolation and uncertainty about the future. Futhermore, understanding the risks associated with COVID-19, its sequelae and its biological mechanisms has not yet been fully established. Given this gap, it is crucial to develop an extractive and predictive approach to support identifying both COVID-19 and its possible sequelae. Therefore, the present study proposes a methodology to carry out this detection and prediction using Artificial Intelligence (AI) techniques related to Machine Learning (ML). This approach involves the utilization of several classifiers, including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), neural network Multilayer Perceptron (MLP), K — Nearest Neighbors (KNN) and Light Gradient Boosting Machine (LGBM). In addition to their individual constructions, these classifiers were combined, forming a new ensemble classifier. These models are applied to two different databases. The first refers to the detection of COVID-19, containing 400 positive records and 691 negative records, with 16 variables. The second set of data is aimed at SPACs, covering examinations of patients with different conditions: 174 with Hypertension, 181 with Asthma, 182 with Congestive Heart Failure and 190 with Coronary Artery Disease. The results obtained highlight the effectiveness of the proposed approach, with an accuracy result of 97% for the first database and an average accuracy of 88,75% for the second database. These accuracy results demonstrate the model’s ability to predict both the presence of COVID-19 and its possible sequelae, providing a valuable tool to support clinical practice and public health.
id UFC-7_62b71783e9f9308543140c8738ff1b64
oai_identifier_str oai:repositorio.ufc.br:riufc/79052
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Farrapo, Ruann Campos de CastroPaula Junior, Iális Cavalcante deAmora, Márcio André Baima2024-12-02T19:40:27Z2024-12-02T19:40:27Z2024FARRAPO, Ruann Campos de Castro. Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda. 2024. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e de Computação), Universidade Federal do Ceará, Campus de Sobral, 2024.http://repositorio.ufc.br/handle/riufc/79052COVID-19 infections and their Post-Acute Sequelae of COVID-19 (SPAC) represent a global health crisis. Associated with this, COVID-19 has had a profound impact on the health of people around the world. In addition to the direct consequences of virus infection, such as serious illness and death, there has been a significant increase in levels of stress, anxiety and depression due to fear of the disease, social isolation and uncertainty about the future. Futhermore, understanding the risks associated with COVID-19, its sequelae and its biological mechanisms has not yet been fully established. Given this gap, it is crucial to develop an extractive and predictive approach to support identifying both COVID-19 and its possible sequelae. Therefore, the present study proposes a methodology to carry out this detection and prediction using Artificial Intelligence (AI) techniques related to Machine Learning (ML). This approach involves the utilization of several classifiers, including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), neural network Multilayer Perceptron (MLP), K — Nearest Neighbors (KNN) and Light Gradient Boosting Machine (LGBM). In addition to their individual constructions, these classifiers were combined, forming a new ensemble classifier. These models are applied to two different databases. The first refers to the detection of COVID-19, containing 400 positive records and 691 negative records, with 16 variables. The second set of data is aimed at SPACs, covering examinations of patients with different conditions: 174 with Hypertension, 181 with Asthma, 182 with Congestive Heart Failure and 190 with Coronary Artery Disease. The results obtained highlight the effectiveness of the proposed approach, with an accuracy result of 97% for the first database and an average accuracy of 88,75% for the second database. These accuracy results demonstrate the model’s ability to predict both the presence of COVID-19 and its possible sequelae, providing a valuable tool to support clinical practice and public health.As infecções por COVID-19 e suas Sequelas Pós-Agudas da COVID-19 (SPAC) representam uma crise global de saúde. Associado a isso, a COVID-19 teve um impacto profundo na saúde das pessoas em todo o mundo. Além das consequências diretas da infecção pelo vírus, como doenças graves e mortes, houve um aumento significativo nos níveis de estresse, ansiedade e depressão devido ao medo da doença, isolamento social e incertezas sobre o futuro. Além disso, a compreensão dos riscos associados à COVID-19, suas sequelas e seus mecanismos biológicos ainda não estão totalmente estabelecidos. Diante dessa lacuna, é crucial desenvolver uma abordagem extrativa e preditiva para o suporte a identificar tanto a COVID-19 quanto suas possíveis sequelas. Assim, o presente estudo propõe uma metodologia para realizar essa detecção e predição utilizando técnicas de Inteligência Artificial (IA) relacionadas com o Machine Learning (ML). Essa abordagem envolve a utilização de vários classificadores, sendo eles o Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), rede neural Multilayer Perceptron (MLP), K — Nearest Neighbors (KNN) e Light Gradient Boosting Machine (LGBM). Além das suas construções individuais, esses classificadores foram combinados, formando um novo classificador ensemble. Esses modelos são aplicados em duas bases de dados distintas. A primeira refere-se à detecção de COVID-19, contendo 400 registros positivos e 691 negativos, com 16 variáveis. O segundo conjunto de dados é voltado para SPAC’s, abrangendo exames de pacientes com diferentes condições: 174 com Hipertensão, 181 com Asma, 182 com Insuficiência Cardíaca Congestiva e 190 com Doença Arterial Coronária. Os resultados obtidos destacam a eficácia da abordagem proposta, com resultado de acurácia nos ensembles construídos, de 97% para a primeira base de dados e com média de acurácia das 4 SPAC’s de 88,75% para a segunda base. Esses resultados de acurácia demonstram a capacidade do modelo de predizer tanto a presença da COVID-19 quanto suas possíveis sequelas, fornecendo uma ferramenta valiosa para o suporte a prática clínica e a saúde pública.Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-agudainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisDetecção COVID-19Sequelas da COVID-19Extração de característicasPrediçãoMachine learningInteligência artificialCOVID-19 detectionCOVID-19 sequelsFeature extractionPredictionMachine learningMachine learningCNPQ::ENGENHARIASinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/7476774178484570https://orcid.org/0000-0001-5046-8718http://lattes.cnpq.br/9606593375708738https://orcid.org/0000-0002-2374-4817http://lattes.cnpq.br/50224537484094322024ORIGINAL2024_dis_rccfarrapo.pdf2024_dis_rccfarrapo.pdfapplication/pdf766754http://repositorio.ufc.br/bitstream/riufc/79052/3/2024_dis_rccfarrapo.pdf178b87dd3b312758132af83a34983260MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/79052/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/790522024-12-02 16:40:31.043oai:repositorio.ufc.br:riufc/79052Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-12-02T19:40:31Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda
title Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda
spellingShingle Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda
Farrapo, Ruann Campos de Castro
CNPQ::ENGENHARIAS
Detecção COVID-19
Sequelas da COVID-19
Extração de características
Predição
Machine learning
Inteligência artificial
COVID-19 detection
COVID-19 sequels
Feature extraction
Prediction
Machine learning
Machine learning
title_short Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda
title_full Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda
title_fullStr Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda
title_full_unstemmed Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda
title_sort Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda
author Farrapo, Ruann Campos de Castro
author_facet Farrapo, Ruann Campos de Castro
author_role author
dc.contributor.co-advisor.none.fl_str_mv Paula Junior, Iális Cavalcante de
dc.contributor.author.fl_str_mv Farrapo, Ruann Campos de Castro
dc.contributor.advisor1.fl_str_mv Amora, Márcio André Baima
contributor_str_mv Amora, Márcio André Baima
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
topic CNPQ::ENGENHARIAS
Detecção COVID-19
Sequelas da COVID-19
Extração de características
Predição
Machine learning
Inteligência artificial
COVID-19 detection
COVID-19 sequels
Feature extraction
Prediction
Machine learning
Machine learning
dc.subject.ptbr.pt_BR.fl_str_mv Detecção COVID-19
Sequelas da COVID-19
Extração de características
Predição
Machine learning
Inteligência artificial
dc.subject.en.pt_BR.fl_str_mv COVID-19 detection
COVID-19 sequels
Feature extraction
Prediction
Machine learning
Machine learning
description COVID-19 infections and their Post-Acute Sequelae of COVID-19 (SPAC) represent a global health crisis. Associated with this, COVID-19 has had a profound impact on the health of people around the world. In addition to the direct consequences of virus infection, such as serious illness and death, there has been a significant increase in levels of stress, anxiety and depression due to fear of the disease, social isolation and uncertainty about the future. Futhermore, understanding the risks associated with COVID-19, its sequelae and its biological mechanisms has not yet been fully established. Given this gap, it is crucial to develop an extractive and predictive approach to support identifying both COVID-19 and its possible sequelae. Therefore, the present study proposes a methodology to carry out this detection and prediction using Artificial Intelligence (AI) techniques related to Machine Learning (ML). This approach involves the utilization of several classifiers, including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), neural network Multilayer Perceptron (MLP), K — Nearest Neighbors (KNN) and Light Gradient Boosting Machine (LGBM). In addition to their individual constructions, these classifiers were combined, forming a new ensemble classifier. These models are applied to two different databases. The first refers to the detection of COVID-19, containing 400 positive records and 691 negative records, with 16 variables. The second set of data is aimed at SPACs, covering examinations of patients with different conditions: 174 with Hypertension, 181 with Asthma, 182 with Congestive Heart Failure and 190 with Coronary Artery Disease. The results obtained highlight the effectiveness of the proposed approach, with an accuracy result of 97% for the first database and an average accuracy of 88,75% for the second database. These accuracy results demonstrate the model’s ability to predict both the presence of COVID-19 and its possible sequelae, providing a valuable tool to support clinical practice and public health.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-12-02T19:40:27Z
dc.date.available.fl_str_mv 2024-12-02T19:40:27Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FARRAPO, Ruann Campos de Castro. Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda. 2024. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e de Computação), Universidade Federal do Ceará, Campus de Sobral, 2024.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/79052
identifier_str_mv FARRAPO, Ruann Campos de Castro. Utilização de inteligência artificial no suporte ao diagnóstico a partir de dados hospitalares da COVID-19 e de suas sequelas pós-aguda. 2024. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e de Computação), Universidade Federal do Ceará, Campus de Sobral, 2024.
url http://repositorio.ufc.br/handle/riufc/79052
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/79052/3/2024_dis_rccfarrapo.pdf
http://repositorio.ufc.br/bitstream/riufc/79052/4/license.txt
bitstream.checksum.fl_str_mv 178b87dd3b312758132af83a34983260
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793001719398400