Differentially private selection using smooth sensitivity
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/78262 |
Resumo: | Differentially private selection mechanisms offer strong privacy guarantees for queries whose canonical outcome is the top-scoring element r within a finite set R according to a dataset-dependent utility function. While selection queries are pervasive throughout data science, there are few mechanisms to ensure their privacy. Additionally, the vast majority focus on achieving differential privacy (DP) through global sensitivity, possibly corrupting the query result with excessive noise and maiming downstream inferences. We propose the Smooth Noisy Max (SNM) algorithm to alleviate this issue. In particular, SNM algorithm leverages the notion of smooth sensitivity to provably provide smaller (upper bounds on) expected errors compared to methods based on global sensitivity under mild conditions. Empirical results show that our algorithm is more accurate than state-of-the-art differentially private selection methods in three applications: percentile selection, greedy decision trees, and random forest. |
| id |
UFC-7_6b9f9c6c5b7e8ab36b710afc004dbc0e |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/78262 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Chaves, Iago CastroMachado, Javam de Castro2024-09-23T19:18:41Z2024-09-23T19:18:41Z2024CHAVES, Iago Castro. Differentially private selection using smooth sensitivity. 2024. 84 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/78262Differentially private selection mechanisms offer strong privacy guarantees for queries whose canonical outcome is the top-scoring element r within a finite set R according to a dataset-dependent utility function. While selection queries are pervasive throughout data science, there are few mechanisms to ensure their privacy. Additionally, the vast majority focus on achieving differential privacy (DP) through global sensitivity, possibly corrupting the query result with excessive noise and maiming downstream inferences. We propose the Smooth Noisy Max (SNM) algorithm to alleviate this issue. In particular, SNM algorithm leverages the notion of smooth sensitivity to provably provide smaller (upper bounds on) expected errors compared to methods based on global sensitivity under mild conditions. Empirical results show that our algorithm is more accurate than state-of-the-art differentially private selection methods in three applications: percentile selection, greedy decision trees, and random forest.Mecanismos de seleção diferencialmente privados oferecem garantias robustas de privacidade para consultas cujo resultado canônico é o elemento de maior pontuação r dentro de um conjunto finito R de acordo com uma função de utilidade dependente do conjunto de dados. Embora as consultas de seleção sejam bem difundidas em toda a ciência de dados, existem poucos mecanismos que proveem garantias de sua privacidade. Além disso, a grande maioria foca em alcançar privacidade diferencial (DP) por meio de sensibilidade global, possivelmente corrompendo o resultado da consulta com excessivo ruído e prejudicando inferências subsequentes. Para mitigar esse problema, propomos o algoritmo Smooth Noisy Max (SNM). Em particular, o algoritmo SNM aproveita o conceito de sensibilidade suave para fornecer erros esperados menores (limites superiores) quando comparados a métodos baseados em sensibilidade global sob leves condições. Resultados empíricos mostram que nosso algoritmo é mais preciso do que os métodos estado-da-arte de seleção diferencialmente privados em três diferentes aplicações: seleção de percentil, árvores de decisão gulosas e floresta aleatória.Differentially private selection using smooth sensitivityDifferentially private selection using smooth sensitivityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisSeleção diferencialmente privadaPrivacidade diferencialDifferentially private selectionDifferential privacyCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttps://orcid.org/0000-0002-1733-3069http://lattes.cnpq.br/5223391736264519http://lattes.cnpq.br/98849805189862252024-09-23ORIGINAL2024_tese_icchaves.pdf2024_tese_icchaves.pdfapplication/pdf830419http://repositorio.ufc.br/bitstream/riufc/78262/5/2024_tese_icchaves.pdf2941d79e6e2d871caa3369f295a3b139MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/78262/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/782622024-09-23 16:20:02.83oai:repositorio.ufc.br:riufc/78262Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-23T19:20:02Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Differentially private selection using smooth sensitivity |
| dc.title.en.pt_BR.fl_str_mv |
Differentially private selection using smooth sensitivity |
| title |
Differentially private selection using smooth sensitivity |
| spellingShingle |
Differentially private selection using smooth sensitivity Chaves, Iago Castro CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Seleção diferencialmente privada Privacidade diferencial Differentially private selection Differential privacy |
| title_short |
Differentially private selection using smooth sensitivity |
| title_full |
Differentially private selection using smooth sensitivity |
| title_fullStr |
Differentially private selection using smooth sensitivity |
| title_full_unstemmed |
Differentially private selection using smooth sensitivity |
| title_sort |
Differentially private selection using smooth sensitivity |
| author |
Chaves, Iago Castro |
| author_facet |
Chaves, Iago Castro |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Chaves, Iago Castro |
| dc.contributor.advisor1.fl_str_mv |
Machado, Javam de Castro |
| contributor_str_mv |
Machado, Javam de Castro |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Seleção diferencialmente privada Privacidade diferencial Differentially private selection Differential privacy |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Seleção diferencialmente privada Privacidade diferencial |
| dc.subject.en.pt_BR.fl_str_mv |
Differentially private selection Differential privacy |
| description |
Differentially private selection mechanisms offer strong privacy guarantees for queries whose canonical outcome is the top-scoring element r within a finite set R according to a dataset-dependent utility function. While selection queries are pervasive throughout data science, there are few mechanisms to ensure their privacy. Additionally, the vast majority focus on achieving differential privacy (DP) through global sensitivity, possibly corrupting the query result with excessive noise and maiming downstream inferences. We propose the Smooth Noisy Max (SNM) algorithm to alleviate this issue. In particular, SNM algorithm leverages the notion of smooth sensitivity to provably provide smaller (upper bounds on) expected errors compared to methods based on global sensitivity under mild conditions. Empirical results show that our algorithm is more accurate than state-of-the-art differentially private selection methods in three applications: percentile selection, greedy decision trees, and random forest. |
| publishDate |
2024 |
| dc.date.accessioned.fl_str_mv |
2024-09-23T19:18:41Z |
| dc.date.available.fl_str_mv |
2024-09-23T19:18:41Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
CHAVES, Iago Castro. Differentially private selection using smooth sensitivity. 2024. 84 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/78262 |
| identifier_str_mv |
CHAVES, Iago Castro. Differentially private selection using smooth sensitivity. 2024. 84 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024. |
| url |
http://repositorio.ufc.br/handle/riufc/78262 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/78262/5/2024_tese_icchaves.pdf http://repositorio.ufc.br/bitstream/riufc/78262/4/license.txt |
| bitstream.checksum.fl_str_mv |
2941d79e6e2d871caa3369f295a3b139 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793071203287040 |