Longitudinal geospatial frequency estimation under adaptive local differentially private model
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.ufc.br/handle/riufc/82741 |
Resumo: | The collection of geospatial data under Local Differential Privacy (LDP) enables valuable spatial analytics without compromising user privacy. However, existing LDP mechanisms rely on static spatial discretizations, such as uniform grids or fixed-depth quadtrees, that are ill-suited to the dynamic and non-uniform nature of real-world mobility data. These limitations are further amplified in longitudinal settings, where users report their locations repeatedly over time. In this work, we propose ALOQ (Adaptive Longitudinal Quadtree), a novel data collection model for continuous, privacy-preserving location frequency estimation under LDP. ALOQ introduces a dynamic quadtree-based spatial representation that evolves in response to noisy user density distributions, improving estimation accuracy while preserving strong privacy guarantees. The model includes a Quadtree Adaptation Window (QAW) to detect significant temporal changes, a similarity-aware privacy budget allocation mechanism, and a bounded refinement strategy that ensures the cumulative privacy loss remains under control. We provide a theoretical analysis of ALOQ’s privacy guarantees and evaluate its performance on both synthetic and real-world datasets. Our results show that ALOQ consistently outperforms state-of-the-art LDP baselines in terms of utility and budget efficiency, particularly in scenarios with skewed spatial distributions and evolving mobility patterns. |
| id |
UFC-7_31479aa3a2d8bc48cc2f78b189909b1d |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/82741 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Duarte Neto, Eduardo RodriguesMachado, Javam de Castro2025-09-26T19:30:28Z2025-09-26T19:30:28Z2025DUARTE NETO, Eduardo Rodrigues. Longitudinal geospatial frequency estimation under adaptive local differentially private model. 2025. 113 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025.http://repositorio.ufc.br/handle/riufc/82741The collection of geospatial data under Local Differential Privacy (LDP) enables valuable spatial analytics without compromising user privacy. However, existing LDP mechanisms rely on static spatial discretizations, such as uniform grids or fixed-depth quadtrees, that are ill-suited to the dynamic and non-uniform nature of real-world mobility data. These limitations are further amplified in longitudinal settings, where users report their locations repeatedly over time. In this work, we propose ALOQ (Adaptive Longitudinal Quadtree), a novel data collection model for continuous, privacy-preserving location frequency estimation under LDP. ALOQ introduces a dynamic quadtree-based spatial representation that evolves in response to noisy user density distributions, improving estimation accuracy while preserving strong privacy guarantees. The model includes a Quadtree Adaptation Window (QAW) to detect significant temporal changes, a similarity-aware privacy budget allocation mechanism, and a bounded refinement strategy that ensures the cumulative privacy loss remains under control. We provide a theoretical analysis of ALOQ’s privacy guarantees and evaluate its performance on both synthetic and real-world datasets. Our results show that ALOQ consistently outperforms state-of-the-art LDP baselines in terms of utility and budget efficiency, particularly in scenarios with skewed spatial distributions and evolving mobility patterns.A coleta de dados geoespaciais sob o modelo de Privacidade Diferencial Local (LDP) viabiliza análises espaciais valiosas sem comprometer a privacidade dos usuários. No entanto, os mecanismos LDP existentes baseiam-se em discretizações espaciais estáticas, como grades uniformes ou quadtrees de profundidade fixa, que são inadequadas para a natureza dinâmica e não uniforme dos dados de mobilidade do mundo real. Essas limitações se agravam em cenários longitudinais, nos quais os usuários reportam suas localizações repetidamente ao longo do tempo. Neste trabalho, propomos o ALOQ (Adaptive Longitudinal Quadtree), um novo framework para estimativa contínua de frequência de localização com preservação de privacidade sob LDP. O ALOQ introduz uma representação espacial dinâmica baseada em quadtree que evolui em resposta a distribuições de densidade de usuários ruidosas, melhorando a acurácia das estimativas sem comprometer as garantias de privacidade. O framework inclui uma Janela de Adaptação da Quadtree (GAW) para detectar mudanças temporais significativas, um mecanismo de alocação de orçamento de privacidade baseado em similaridade e uma estratégia de refinamento com limites que assegura controle sobre o acúmulo de perda de privacidade ao longo do tempo. Apresentamos uma análise teórica das garantias de privacidade do ALOQ e avaliamos seu desempenho em conjuntos de dados sintéticos e reais. Os resultados demonstram que o ALOQ supera consistentemente os principais métodos LDP da literatura em termos de utilidade e eficiência no uso do orçamento de privacidade, especialmente em cenários com distribuições espaciais assimétricas e padrões de mobilidade dinâmicos.Longitudinal geospatial frequency estimation under adaptive local differentially private modelLongitudinal geospatial frequency estimation under adaptive local differentially private modelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPrivacidade diferencial localPrivacidade diferencialDados de localizaçãoParticionamento espacialLocal differential privacyDifferential privacyLocation dataSpatial partitionCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC0000-0003-1222-563Xhttps://lattes.cnpq.br/9088370074451475http://lattes.cnpq.br/9884980518986225LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/82741/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2025_tese_erduarteneto.pdf2025_tese_erduarteneto.pdfapplication/pdf2435210http://repositorio.ufc.br/bitstream/riufc/82741/3/2025_tese_erduarteneto.pdf90939b7b4623b343605c9afde75f92fbMD53riufc/827412025-09-30 14:43:10.076oai:repositorio.ufc.br:riufc/82741Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-09-30T17:43:10Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Longitudinal geospatial frequency estimation under adaptive local differentially private model |
| dc.title.en.pt_BR.fl_str_mv |
Longitudinal geospatial frequency estimation under adaptive local differentially private model |
| title |
Longitudinal geospatial frequency estimation under adaptive local differentially private model |
| spellingShingle |
Longitudinal geospatial frequency estimation under adaptive local differentially private model Duarte Neto, Eduardo Rodrigues CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Privacidade diferencial local Privacidade diferencial Dados de localização Particionamento espacial Local differential privacy Differential privacy Location data Spatial partition |
| title_short |
Longitudinal geospatial frequency estimation under adaptive local differentially private model |
| title_full |
Longitudinal geospatial frequency estimation under adaptive local differentially private model |
| title_fullStr |
Longitudinal geospatial frequency estimation under adaptive local differentially private model |
| title_full_unstemmed |
Longitudinal geospatial frequency estimation under adaptive local differentially private model |
| title_sort |
Longitudinal geospatial frequency estimation under adaptive local differentially private model |
| author |
Duarte Neto, Eduardo Rodrigues |
| author_facet |
Duarte Neto, Eduardo Rodrigues |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Duarte Neto, Eduardo Rodrigues |
| dc.contributor.advisor1.fl_str_mv |
Machado, Javam de Castro |
| contributor_str_mv |
Machado, Javam de Castro |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Privacidade diferencial local Privacidade diferencial Dados de localização Particionamento espacial Local differential privacy Differential privacy Location data Spatial partition |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Privacidade diferencial local Privacidade diferencial Dados de localização Particionamento espacial |
| dc.subject.en.pt_BR.fl_str_mv |
Local differential privacy Differential privacy Location data Spatial partition |
| description |
The collection of geospatial data under Local Differential Privacy (LDP) enables valuable spatial analytics without compromising user privacy. However, existing LDP mechanisms rely on static spatial discretizations, such as uniform grids or fixed-depth quadtrees, that are ill-suited to the dynamic and non-uniform nature of real-world mobility data. These limitations are further amplified in longitudinal settings, where users report their locations repeatedly over time. In this work, we propose ALOQ (Adaptive Longitudinal Quadtree), a novel data collection model for continuous, privacy-preserving location frequency estimation under LDP. ALOQ introduces a dynamic quadtree-based spatial representation that evolves in response to noisy user density distributions, improving estimation accuracy while preserving strong privacy guarantees. The model includes a Quadtree Adaptation Window (QAW) to detect significant temporal changes, a similarity-aware privacy budget allocation mechanism, and a bounded refinement strategy that ensures the cumulative privacy loss remains under control. We provide a theoretical analysis of ALOQ’s privacy guarantees and evaluate its performance on both synthetic and real-world datasets. Our results show that ALOQ consistently outperforms state-of-the-art LDP baselines in terms of utility and budget efficiency, particularly in scenarios with skewed spatial distributions and evolving mobility patterns. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-09-26T19:30:28Z |
| dc.date.available.fl_str_mv |
2025-09-26T19:30:28Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
DUARTE NETO, Eduardo Rodrigues. Longitudinal geospatial frequency estimation under adaptive local differentially private model. 2025. 113 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/82741 |
| identifier_str_mv |
DUARTE NETO, Eduardo Rodrigues. Longitudinal geospatial frequency estimation under adaptive local differentially private model. 2025. 113 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025. |
| url |
http://repositorio.ufc.br/handle/riufc/82741 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/82741/2/license.txt http://repositorio.ufc.br/bitstream/riufc/82741/3/2025_tese_erduarteneto.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 90939b7b4623b343605c9afde75f92fb |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792964030431232 |