Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/21530 |
Resumo: | In this paper, we analyze the behavior of equivalence classes provided by the relation Bi-K-bi-Lipschitz. We show that when we are working with germs pairs of polynomial applications (f; g) : (Rn; 0) ! (Rp Rq; 0), with degree of f1; :::; fp; g1; :::; gq less than or equal to k 2 N, we have only a fi nite number of equivalence classes. We will also show in this work that the sets of equivalence classes with respect to strongly bi-lipschitz relation is fi nite. |
| id |
UFC-7_7d5dc19a4016451a44cd4ac166d3e5bd |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/21530 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Sena Filho, Edvalter da SilvaFernandes, Alexandre Cesar GurgelBirbrair, Lev2017-01-12T12:51:02Z2017-01-12T12:51:02Z2016SENA FILHO, Edvalter da Silva. Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes. 2016. 61 f. Tese (Doutorado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/21530In this paper, we analyze the behavior of equivalence classes provided by the relation Bi-K-bi-Lipschitz. We show that when we are working with germs pairs of polynomial applications (f; g) : (Rn; 0) ! (Rp Rq; 0), with degree of f1; :::; fp; g1; :::; gq less than or equal to k 2 N, we have only a fi nite number of equivalence classes. We will also show in this work that the sets of equivalence classes with respect to strongly bi-lipschitz relation is fi nite.Neste trabalho, iremos analisar o comportamento das classes de equivalência, fornecida pela rela ção Bi-K-bi-Lipschitz. Mostramos que, quando estamos trabalhando com pares de germes de aplica ções polinomiais (f; g) : (Rn; 0) ! (Rp Rq; 0), onde o grau de f1; :::fp; g1; :::; gq s~ao menores ou iguais a k 2 N, temos apenas uma quantidade fi nita de classes de equivalência. Tamb em mostraremos neste trabalho que o conjuntos das classes de equivalência com respeito a rela ção fortemente bi-lipschitz e fi nito.K-bi-Lipschitz equivalênciaClasses de equivalênciaFinitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentesFinite for pairs of germs of equivalent Bi-K-bi-Lipschitz applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2016_tese_essenafilho.pdf2016_tese_essenafilho.pdfapplication/pdf507783http://repositorio.ufc.br/bitstream/riufc/21530/1/2016_tese_essenafilho.pdf757aea745e363acfffd93d083b635d07MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/21530/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/215302019-01-04 10:29:57.697oai:repositorio.ufc.br:riufc/21530Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-01-04T13:29:57Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes |
| dc.title.en.pt_BR.fl_str_mv |
Finite for pairs of germs of equivalent Bi-K-bi-Lipschitz applications |
| title |
Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes |
| spellingShingle |
Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes Sena Filho, Edvalter da Silva K-bi-Lipschitz equivalência Classes de equivalência |
| title_short |
Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes |
| title_full |
Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes |
| title_fullStr |
Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes |
| title_full_unstemmed |
Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes |
| title_sort |
Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes |
| author |
Sena Filho, Edvalter da Silva |
| author_facet |
Sena Filho, Edvalter da Silva |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Fernandes, Alexandre Cesar Gurgel |
| dc.contributor.author.fl_str_mv |
Sena Filho, Edvalter da Silva |
| dc.contributor.advisor1.fl_str_mv |
Birbrair, Lev |
| contributor_str_mv |
Birbrair, Lev |
| dc.subject.por.fl_str_mv |
K-bi-Lipschitz equivalência Classes de equivalência |
| topic |
K-bi-Lipschitz equivalência Classes de equivalência |
| description |
In this paper, we analyze the behavior of equivalence classes provided by the relation Bi-K-bi-Lipschitz. We show that when we are working with germs pairs of polynomial applications (f; g) : (Rn; 0) ! (Rp Rq; 0), with degree of f1; :::; fp; g1; :::; gq less than or equal to k 2 N, we have only a fi nite number of equivalence classes. We will also show in this work that the sets of equivalence classes with respect to strongly bi-lipschitz relation is fi nite. |
| publishDate |
2016 |
| dc.date.issued.fl_str_mv |
2016 |
| dc.date.accessioned.fl_str_mv |
2017-01-12T12:51:02Z |
| dc.date.available.fl_str_mv |
2017-01-12T12:51:02Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SENA FILHO, Edvalter da Silva. Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes. 2016. 61 f. Tese (Doutorado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/21530 |
| identifier_str_mv |
SENA FILHO, Edvalter da Silva. Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes. 2016. 61 f. Tese (Doutorado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. |
| url |
http://www.repositorio.ufc.br/handle/riufc/21530 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/21530/1/2016_tese_essenafilho.pdf http://repositorio.ufc.br/bitstream/riufc/21530/2/license.txt |
| bitstream.checksum.fl_str_mv |
757aea745e363acfffd93d083b635d07 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793026936602624 |