Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Costa, André Luiz Araújo da
Orientador(a): Grandjean, Vincent Jean-Henri
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/70235
Resumo: We study Lipschitz geometry of fibers of complex polynomial mappings from two points of view: the equivalence of inner and outer metrics of an algebraic curve and the existence of a locally bi-Lipschitz trivial fibre bundle structure over a subset of values of polynomial mappings. We prove that the affi ne part of a connected projective algebraic curve is Lipschitz normally embedded if and only if the following three conditions are satisfi ed: its affi ne part is connected, its affi ne part is locally Lipschitz normally embedded at each of its singular points; and its degree equals to the number of its points at infi nity. Moreover, we show that any Lipschitz trivial value of a real or complex polynomial mapping is a suspension of a regular value of properness of a polynomial mapping in fewer variables. Last, we show that this result cannot extend to rational mappings.
id UFC-7_62218d69dcdb2cf5232dc0b4a6c709af
oai_identifier_str oai:repositorio.ufc.br:riufc/70235
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Costa, André Luiz Araújo daMichalska, Maria JadwigaGrandjean, Vincent Jean-Henri2023-01-24T16:50:23Z2023-01-24T16:50:23Z2023-01-17COSTA, André Luiz Araújo da. Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings. 2023. 68 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2023.http://www.repositorio.ufc.br/handle/riufc/70235We study Lipschitz geometry of fibers of complex polynomial mappings from two points of view: the equivalence of inner and outer metrics of an algebraic curve and the existence of a locally bi-Lipschitz trivial fibre bundle structure over a subset of values of polynomial mappings. We prove that the affi ne part of a connected projective algebraic curve is Lipschitz normally embedded if and only if the following three conditions are satisfi ed: its affi ne part is connected, its affi ne part is locally Lipschitz normally embedded at each of its singular points; and its degree equals to the number of its points at infi nity. Moreover, we show that any Lipschitz trivial value of a real or complex polynomial mapping is a suspension of a regular value of properness of a polynomial mapping in fewer variables. Last, we show that this result cannot extend to rational mappings.Estudamos a geometria Lipschitz das fibras de aplicações polinomiais complexas de dois pontos de vista: a equivalência entre as métricas induzida e intrínseca e a existência de estrutura local de feixe bi-Lipschitz de fibras sobre um conjunto de valores de uma aplicação polinomial. Provamos que a parte afim de uma curva algébrica projetiva conexa é Lipschitz normalmente mergulhada se, e somente se, as seguintes três condições são satisfeitas: sua parte afim é conexa; sua parte afim é localmente Lipschitz normalmente mergulhada em cada um dos seus pontos singulares; e seu grau é igual seu número de pontos no infinito. Além disso, mostramos que todo valor Lipschitz trivial de uma aplicação polinomial real ou complexa é a suspensão de um valor regular próprio de uma aplicação polinomial em menos variáveis. Por último, mostramos que esse resultado não é estendido para funções racionais.Geometria LipschitzLipschitz normalmente mergulhadoValores Lipschitz triviaisLipschitz geometryLipschitz normally embeddedLipschitz trivial valuesCharacterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappingsCaracterização de curvas complexas Lipschitz normalmente mergulhadas e valores Lipschitz triviais de aplicações polinomiaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/70235/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2023_tese_alacosta.pdf2023_tese_alacosta.pdfapplication/pdf852952http://repositorio.ufc.br/bitstream/riufc/70235/3/2023_tese_alacosta.pdf85c360a672ea5a5e99f7287efee1829aMD53riufc/702352023-01-25 14:20:45.212oai:repositorio.ufc.br:riufc/70235Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-01-25T17:20:45Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings
dc.title.alternative.pt_BR.fl_str_mv Caracterização de curvas complexas Lipschitz normalmente mergulhadas e valores Lipschitz triviais de aplicações polinomiais
title Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings
spellingShingle Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings
Costa, André Luiz Araújo da
Geometria Lipschitz
Lipschitz normalmente mergulhado
Valores Lipschitz triviais
Lipschitz geometry
Lipschitz normally embedded
Lipschitz trivial values
title_short Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings
title_full Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings
title_fullStr Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings
title_full_unstemmed Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings
title_sort Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings
author Costa, André Luiz Araújo da
author_facet Costa, André Luiz Araújo da
author_role author
dc.contributor.co-advisor.none.fl_str_mv Michalska, Maria Jadwiga
dc.contributor.author.fl_str_mv Costa, André Luiz Araújo da
dc.contributor.advisor1.fl_str_mv Grandjean, Vincent Jean-Henri
contributor_str_mv Grandjean, Vincent Jean-Henri
dc.subject.por.fl_str_mv Geometria Lipschitz
Lipschitz normalmente mergulhado
Valores Lipschitz triviais
Lipschitz geometry
Lipschitz normally embedded
Lipschitz trivial values
topic Geometria Lipschitz
Lipschitz normalmente mergulhado
Valores Lipschitz triviais
Lipschitz geometry
Lipschitz normally embedded
Lipschitz trivial values
description We study Lipschitz geometry of fibers of complex polynomial mappings from two points of view: the equivalence of inner and outer metrics of an algebraic curve and the existence of a locally bi-Lipschitz trivial fibre bundle structure over a subset of values of polynomial mappings. We prove that the affi ne part of a connected projective algebraic curve is Lipschitz normally embedded if and only if the following three conditions are satisfi ed: its affi ne part is connected, its affi ne part is locally Lipschitz normally embedded at each of its singular points; and its degree equals to the number of its points at infi nity. Moreover, we show that any Lipschitz trivial value of a real or complex polynomial mapping is a suspension of a regular value of properness of a polynomial mapping in fewer variables. Last, we show that this result cannot extend to rational mappings.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-01-24T16:50:23Z
dc.date.available.fl_str_mv 2023-01-24T16:50:23Z
dc.date.issued.fl_str_mv 2023-01-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COSTA, André Luiz Araújo da. Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings. 2023. 68 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2023.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/70235
identifier_str_mv COSTA, André Luiz Araújo da. Characterization of Lipschitz normally embedded complex curves and Lipschitz trivial values of polynomial mappings. 2023. 68 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2023.
url http://www.repositorio.ufc.br/handle/riufc/70235
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/70235/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/70235/3/2023_tese_alacosta.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
85c360a672ea5a5e99f7287efee1829a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793028130930688