Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Heinonen, Esko Antero
Orientador(a): Lira, Jorge Herbert Soares de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/34925
Resumo: The unifying theme of the five articles, [A,B,C,D,E], forming this dissertation is the existence and non-existence of continuous entire non-constant solutions for nonlinear differential operators on a Riemannian manifold M. The existence results of such solutions are proved by studying the asymptotic Dirichlet problem under different assumptions on the geometry of the manifold. Minimal graphic functions are studied in articles [A] and [D]. Article [A] deals with an existence result whereas in [D] we give both existence and non-existence results with respect to the curvature of M. Moreover p-harmonic functions are studied in [D]. Article [B] deals with the existence of A -harmonic functions under similar curvature assumptions as in [A]. In article [C] we study the existence of f-minimal graphs, which are generalisations of usual minimal graphs, and in the article [E] the Killing graphs on warped product manifolds. Before turning to the ideas and results of the research articles, we present some key concepts of the thesis and give a brief history of the development of the asymptotic Dirichlet problem. Due to the similarity of the techniques in [A] and [B], we treat them together in Section 3. Article [C] is treated in Section 4, article [D] in Section 5 and article [E] in Section 6. At the beginning of the Sections 3 – 6 we briefly give the background of the methods and techniques used in the articles.
id UFC-7_bfc91ea68dc1bc0ec5b353ed7f7620c0
oai_identifier_str oai:repositorio.ufc.br:riufc/34925
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Heinonen, Esko AnteroHolopainen, Ilkka OlaviLira, Jorge Herbert Soares de2018-08-20T14:56:55Z2018-08-20T14:56:55Z2018-03-06HEINONEN, Esko Antero. Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. 2018. 166 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/34925The unifying theme of the five articles, [A,B,C,D,E], forming this dissertation is the existence and non-existence of continuous entire non-constant solutions for nonlinear differential operators on a Riemannian manifold M. The existence results of such solutions are proved by studying the asymptotic Dirichlet problem under different assumptions on the geometry of the manifold. Minimal graphic functions are studied in articles [A] and [D]. Article [A] deals with an existence result whereas in [D] we give both existence and non-existence results with respect to the curvature of M. Moreover p-harmonic functions are studied in [D]. Article [B] deals with the existence of A -harmonic functions under similar curvature assumptions as in [A]. In article [C] we study the existence of f-minimal graphs, which are generalisations of usual minimal graphs, and in the article [E] the Killing graphs on warped product manifolds. Before turning to the ideas and results of the research articles, we present some key concepts of the thesis and give a brief history of the development of the asymptotic Dirichlet problem. Due to the similarity of the techniques in [A] and [B], we treat them together in Section 3. Article [C] is treated in Section 4, article [D] in Section 5 and article [E] in Section 6. At the beginning of the Sections 3 – 6 we briefly give the background of the methods and techniques used in the articles.O tema que dá unidade aos artigos [A,B,C,D,E] que compõem esta dissertação é a existência e não-existência de soluções contínuas, inteiras, de equações diferenciais não-lineares em uma variedade Riemanniana M. Os resultados de existência de tais soluções são demonstrados estudando-se o problema de Dirichlet assintótico sob diversas hipóteses relativas a geometria da variedade. Funções que definem gráficos mínimos são estudadas nos artigos [A] e [D]. O artigo [A] lida com um resultado de existˆencia, ao passo que, em [D], obtemos tanto resultados de existˆencia quanto de n˜ao-existˆencia com respeito a curvatura de M. Al´em disso, fun¸c˜oes p-harmˆonicas s˜ao tamb´em estudadas em [D]. O artigo [B] lida com a existˆencia de fun¸c˜oes A -harmˆonicas sob hip´oteses de curvatura similares `aquelas em [A]. No artigo [C], estudamos a existˆencia de gr´aficos f- m´ınimos, os quais generalizam os gr´aficos m´ınimos usuais. Por fim, no artigo [E], tratamos de gr´aficos de Killing em produtos warped. Antes de passar `as ideias e resultados dos artigos de pesquisa. apresentamos alguns conceitos fundamentais da tese e um breve hist´orico das contribui¸c˜oes ao problema de Dirichlet assint´otico. Dada a similaridade das t´ecnicas em [A] e [B], tratamo-as con- juntamente na se¸c˜ao 3. O artigo [C] ´e, ent˜ao, considerado na se¸c˜ao 4, o artigo [D] na se¸c˜ao 5 e, por fim, o artigo [E] na se¸c˜ao 6. No in´ıcio das se¸c˜oes 3 – 6, descrevemos brevemente os m´etodos e t´ecniicas usados nos artigos correspondentes.Cartan-Hadamard manifoldsMean curvaturep-LaplacianAsymptotic problemNonlinear partial differential equationsVariedades de Cartan-HadamardCurvatura médiap-laplacianoProblema assintóticoEquações diferenciais parciais não-linearesDirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2018_tese_eaheinonen.pdf2018_tese_eaheinonen.pdfapplication/pdf1285547http://repositorio.ufc.br/bitstream/riufc/34925/1/2018_tese_eaheinonen.pdf6840a1238f400ab82113c02695b3df5eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81788http://repositorio.ufc.br/bitstream/riufc/34925/2/license.txt89db4352906ed83f2ba5c6aed577d589MD52riufc/349252019-01-04 10:14:56.711oai:repositorio.ufc.br:riufc/34925w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLCBhbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0gY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZSBkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhCnRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcyBkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZQp0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlCmN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UgYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvCmVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCgoKRepositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-01-04T13:14:56Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.
dc.title.en.pt_BR.fl_str_mv Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.
title Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.
spellingShingle Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.
Heinonen, Esko Antero
Cartan-Hadamard manifolds
Mean curvature
p-Laplacian
Asymptotic problem
Nonlinear partial differential equations
Variedades de Cartan-Hadamard
Curvatura média
p-laplaciano
Problema assintótico
Equações diferenciais parciais não-lineares
title_short Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.
title_full Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.
title_fullStr Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.
title_full_unstemmed Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.
title_sort Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.
author Heinonen, Esko Antero
author_facet Heinonen, Esko Antero
author_role author
dc.contributor.co-advisor.none.fl_str_mv Holopainen, Ilkka Olavi
dc.contributor.author.fl_str_mv Heinonen, Esko Antero
dc.contributor.advisor1.fl_str_mv Lira, Jorge Herbert Soares de
contributor_str_mv Lira, Jorge Herbert Soares de
dc.subject.por.fl_str_mv Cartan-Hadamard manifolds
Mean curvature
p-Laplacian
Asymptotic problem
Nonlinear partial differential equations
Variedades de Cartan-Hadamard
Curvatura média
p-laplaciano
Problema assintótico
Equações diferenciais parciais não-lineares
topic Cartan-Hadamard manifolds
Mean curvature
p-Laplacian
Asymptotic problem
Nonlinear partial differential equations
Variedades de Cartan-Hadamard
Curvatura média
p-laplaciano
Problema assintótico
Equações diferenciais parciais não-lineares
description The unifying theme of the five articles, [A,B,C,D,E], forming this dissertation is the existence and non-existence of continuous entire non-constant solutions for nonlinear differential operators on a Riemannian manifold M. The existence results of such solutions are proved by studying the asymptotic Dirichlet problem under different assumptions on the geometry of the manifold. Minimal graphic functions are studied in articles [A] and [D]. Article [A] deals with an existence result whereas in [D] we give both existence and non-existence results with respect to the curvature of M. Moreover p-harmonic functions are studied in [D]. Article [B] deals with the existence of A -harmonic functions under similar curvature assumptions as in [A]. In article [C] we study the existence of f-minimal graphs, which are generalisations of usual minimal graphs, and in the article [E] the Killing graphs on warped product manifolds. Before turning to the ideas and results of the research articles, we present some key concepts of the thesis and give a brief history of the development of the asymptotic Dirichlet problem. Due to the similarity of the techniques in [A] and [B], we treat them together in Section 3. Article [C] is treated in Section 4, article [D] in Section 5 and article [E] in Section 6. At the beginning of the Sections 3 – 6 we briefly give the background of the methods and techniques used in the articles.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-08-20T14:56:55Z
dc.date.available.fl_str_mv 2018-08-20T14:56:55Z
dc.date.issued.fl_str_mv 2018-03-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv HEINONEN, Esko Antero. Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. 2018. 166 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/34925
identifier_str_mv HEINONEN, Esko Antero. Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. 2018. 166 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.
url http://www.repositorio.ufc.br/handle/riufc/34925
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/34925/1/2018_tese_eaheinonen.pdf
http://repositorio.ufc.br/bitstream/riufc/34925/2/license.txt
bitstream.checksum.fl_str_mv 6840a1238f400ab82113c02695b3df5e
89db4352906ed83f2ba5c6aed577d589
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793073155735552