Sistema de visão computacional para a caracterização da grafita usando microfotografias
| Ano de defesa: | 2007 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/16108 |
Resumo: | Caterials Sciences field uses Computational Vision systems to determine size and/or amount of grains, welding control, modeling of alloy elements, among other. The present paper has as main objective to develop and validate the SVRNA system (Microstructure Segmentation for Computational Vision based on Artificial Neural Networks), which, combined with Arti¯cial Neural Network, uses mathematical morphology technics to accomplish the constituent segmentations from white cast iron of semi-automatic form, and graphite automatic classi¯cation from nodular, malleable and gray cast iron. Segmentation and quanti¯cation results of this materials are compared between SVRNA and a commercial program more used in this domain. Comparative analysis between this methods showed that SVRNA present best results. It has concluded, therefore, which the proposed system can be used in applications in Material Sciences field for microstructure segmentation and quantification in metallic materials, reducing the analyze time, and obtained accurate results. |
| id |
UFC-7_c4bca1972cc23a6654b37fa1e81a51ec |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/16108 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Albuquerque, Victor Hugo Costa deCortez, Paulo César2016-04-06T16:42:01Z2016-04-06T16:42:01Z2007ALBUQUERQUE, V. H. C. Sistema de visão computacional para a caracterização da grafita usando microfotografias. 2007. 72 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007.http://www.repositorio.ufc.br/handle/riufc/16108Caterials Sciences field uses Computational Vision systems to determine size and/or amount of grains, welding control, modeling of alloy elements, among other. The present paper has as main objective to develop and validate the SVRNA system (Microstructure Segmentation for Computational Vision based on Artificial Neural Networks), which, combined with Arti¯cial Neural Network, uses mathematical morphology technics to accomplish the constituent segmentations from white cast iron of semi-automatic form, and graphite automatic classi¯cation from nodular, malleable and gray cast iron. Segmentation and quanti¯cation results of this materials are compared between SVRNA and a commercial program more used in this domain. Comparative analysis between this methods showed that SVRNA present best results. It has concluded, therefore, which the proposed system can be used in applications in Material Sciences field for microstructure segmentation and quantification in metallic materials, reducing the analyze time, and obtained accurate results.A área de Ciência dos Materiais utiliza sistemas de Visão Computacional para determinar tamanho e/ou quantidade de grãos, controle de soldagem, modelamento de elementos de ligas, entre outras. O presente trabalho tem como principal objetivo desenvolver e validar o programa SVRNA (Segmentação de Microestruturas por Visão Computacional Baseada em Rede Neural Artificial), que, combinado com Rede Neural Artificial, utiliza técnicas de morfologia matemática para realizar a segmentação dos constituintes do ferro fundido branco de forma semi-automática e a classificação automática da grafita nos ferros fundidos nodular, maleável e cinzento. Os resultados da segmentação e quantificação destes materiais são comparados entre o SVRNA e um programa comercial bastante utilizado neste domínio. A análise comparativa entre estes métodos mostra que o SVRNA apresenta melhores resultados. Conclui-se, portanto, que o sistema proposto pode ser utilizado em aplicações na área da Ciência dos Materiais para a segmentação e quantificação de constituintes em materiais metálicos, reduzindo o tempo de análise e obtendo resultados precisos.TeleinformáticaCiência dos materiaisFerro fundidoRedes neuraisVisão por computadorSistema de visão computacional para a caracterização da grafita usando microfotografiasSystem of computational vision for the characterization of the graphite using microphotographiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2007_dis_vhcalbuquerque.pdf2007_dis_vhcalbuquerque.pdfapplication/pdf3387249http://repositorio.ufc.br/bitstream/riufc/16108/1/2007_dis_vhcalbuquerque.pdfd481ca28c0ee4f8e40aaf98708890c74MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81786http://repositorio.ufc.br/bitstream/riufc/16108/2/license.txt8c4401d3d14722a7ca2d07c782a1aab3MD52riufc/161082020-08-24 13:12:45.74oai:repositorio.ufc.br:riufc/16108w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLAphbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYQpsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0KY29udGF0byBhdHJhdsOpcyBkZTogcmVwb3NpdG9yaW9AdWZjLmJyIG91ICg4NSkzMzY2LTk1MDguCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQW8gYXNzaW5hciBlIGVudHJlZ2FyIGVzdGEgbGljZW7Dp2EsIG8vYSBTci4vU3JhLiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKToKCmEpIENvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZQpyZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSwgY29tdW5pY2FyIGUvb3UKZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbQpmb3JtYXRvIGRpZ2l0YWwgb3UgaW1wcmVzc28gZSBlbSBxdWFscXVlciBtZWlvLgoKYikgRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZQpkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSwgdGFudG8gcXVhbnRvIGxoZSDDqSBwb3Nzw612ZWwgc2FiZXIsIG9zIGRpcmVpdG9zIGRlIHF1YWxxdWVyIG91dHJhIHBlc3NvYSBvdSBlbnRpZGFkZS4KCmMpIFNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCBuw6NvIGRldMOpbSBvcwpkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGF1dG9yaXphw6fDo28gZG8gZGV0ZW50b3IgZG9zCmRpcmVpdG9zIGRlIGF1dG9yIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8KcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGRlY2xhcmEgcXVlIGN1bXByaXUgcXVhaXNxdWVyIG9icmlnYcOnw7VlcyBleGlnaWRhcyBwZWxvIHJlc3BlY3Rpdm8gY29udHJhdG8gb3UKYWNvcmRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgc2V1IChzKSBub21lIChzKSBjb21vIG8gKHMpIGF1dG9yIChlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-08-24T16:12:45Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Sistema de visão computacional para a caracterização da grafita usando microfotografias |
| dc.title.en.pt_BR.fl_str_mv |
System of computational vision for the characterization of the graphite using microphotographies |
| title |
Sistema de visão computacional para a caracterização da grafita usando microfotografias |
| spellingShingle |
Sistema de visão computacional para a caracterização da grafita usando microfotografias Albuquerque, Victor Hugo Costa de Teleinformática Ciência dos materiais Ferro fundido Redes neurais Visão por computador |
| title_short |
Sistema de visão computacional para a caracterização da grafita usando microfotografias |
| title_full |
Sistema de visão computacional para a caracterização da grafita usando microfotografias |
| title_fullStr |
Sistema de visão computacional para a caracterização da grafita usando microfotografias |
| title_full_unstemmed |
Sistema de visão computacional para a caracterização da grafita usando microfotografias |
| title_sort |
Sistema de visão computacional para a caracterização da grafita usando microfotografias |
| author |
Albuquerque, Victor Hugo Costa de |
| author_facet |
Albuquerque, Victor Hugo Costa de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Albuquerque, Victor Hugo Costa de |
| dc.contributor.advisor1.fl_str_mv |
Cortez, Paulo César |
| contributor_str_mv |
Cortez, Paulo César |
| dc.subject.por.fl_str_mv |
Teleinformática Ciência dos materiais Ferro fundido Redes neurais Visão por computador |
| topic |
Teleinformática Ciência dos materiais Ferro fundido Redes neurais Visão por computador |
| description |
Caterials Sciences field uses Computational Vision systems to determine size and/or amount of grains, welding control, modeling of alloy elements, among other. The present paper has as main objective to develop and validate the SVRNA system (Microstructure Segmentation for Computational Vision based on Artificial Neural Networks), which, combined with Arti¯cial Neural Network, uses mathematical morphology technics to accomplish the constituent segmentations from white cast iron of semi-automatic form, and graphite automatic classi¯cation from nodular, malleable and gray cast iron. Segmentation and quanti¯cation results of this materials are compared between SVRNA and a commercial program more used in this domain. Comparative analysis between this methods showed that SVRNA present best results. It has concluded, therefore, which the proposed system can be used in applications in Material Sciences field for microstructure segmentation and quantification in metallic materials, reducing the analyze time, and obtained accurate results. |
| publishDate |
2007 |
| dc.date.issued.fl_str_mv |
2007 |
| dc.date.accessioned.fl_str_mv |
2016-04-06T16:42:01Z |
| dc.date.available.fl_str_mv |
2016-04-06T16:42:01Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
ALBUQUERQUE, V. H. C. Sistema de visão computacional para a caracterização da grafita usando microfotografias. 2007. 72 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/16108 |
| identifier_str_mv |
ALBUQUERQUE, V. H. C. Sistema de visão computacional para a caracterização da grafita usando microfotografias. 2007. 72 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007. |
| url |
http://www.repositorio.ufc.br/handle/riufc/16108 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/16108/1/2007_dis_vhcalbuquerque.pdf http://repositorio.ufc.br/bitstream/riufc/16108/2/license.txt |
| bitstream.checksum.fl_str_mv |
d481ca28c0ee4f8e40aaf98708890c74 8c4401d3d14722a7ca2d07c782a1aab3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793031141392384 |