Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: SILVA, Ítallo de Sousa.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://dspace.sti.ufcg.edu.br/handle/riufcg/41298
Resumo: Sistemas derecomendação(RSs)tornaram-secomunsnodiaadiadeboapartedapop- ulação, auxiliandousuáriosnadescobertadeitensrelevantesemdiversosdomínios.No entanto, acrescentecomplexidadedosRSslevantapreocupaçõessobresuatransparênciae interpretabilidade, especialmenteemaplicaçõesdealtoimpacto.Estadissertaçãoinvestigao potencial dosGrandesModelosdeLinguagem(LLMs)paragerarexplicaçõesautomatizadas e centradasnoserhumanoparaRSseavaliasuafidelidadeemrefletiroraciocíniointerno dos modelos.Avaliamosrecomendaçõespersonalizadasdefilmeseexplicaçõesgeradas pelo GPT-3.5Turbopormeiodeumestudocomusuários,medindoeficácia,personaliza- ção epoderdepersuasão.Umestudocomplementar,abrangendorecomendaçõesdefilmes, músicas elivrosgeradasporquatroLLMs(asaber,GPT-4o,Llama3,Gemma2eMixtral 8x7B), avaliouafidelidadedessasexplicaçõesusandoumaavaliaçãoaxiomáticabaseada no AcordodeImportânciadeCaracterísticas.Nossosresultadosrevelaramque,emboraas recomendações geradaspelosLLMstenhammelhoradoasatisfaçãodousuárioemcom- paração comseleçõesaleatórias,asexplicaçõesfrequentementenãoatendiamaoscritérios de fidelidade.Surpreendentemente,explicaçõesbaseadasempreferênciasdousuárionão foram consistentementepercebidascomomaispersonalizadas,eficazesoupersuasivasdo que explicaçõesgenéricas.Asprincipaiscontribuiçõesincluíramumaavaliaçãocentrada no usuáriodaqualidadedasexplicações,ummétodoaxiomáticoparaavaliarafidelidade, percepções sobrepreferênciasdosusuáriosetiposdeexplicações,alémdeumaanáliseda interação entreosobjetivosdasexplicações.Desafiosnotáveisidentificadosincluemasca- pacidades limitadasdepersonalizaçãodosLLMs,avariabilidadenosresultadosdevidoao comportamento nãodeterminísticoeanaturezainerentementedecaixa-pretadessesmode- los. EstetrabalhodestacaaspromessaselimitaçõesdosLLMsemRSsExplicáveisefornece uma baseparafuturaspesquisasquebusquemmelhoraroalinhamentoentreapercepçãodo usuário eafidelidadedasexplicações.
id UFCG_2776d78bf107db58ecaac9a11b48e66a
oai_identifier_str oai:dspace.sti.ufcg.edu.br:riufcg/41298
network_acronym_str UFCG
network_name_str Biblioteca Digital de Teses e Dissertações da UFCG
repository_id_str
spelling Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanationsAproveitando LLMs para sistemas de recomendação explicáveis: explorando Percepções do usuário e fidelidade nas explicações geradasRecuperação de InformaçãoEstudo de UsuárioSistemas de Recomendação (RSs)Grandes Modelos de Linguagem (LLMs)Large Language Models (LLMs)Recommendation Systems (SRs)User StudyInformation RetrievalCiência da ComputaçãoSistemas derecomendação(RSs)tornaram-secomunsnodiaadiadeboapartedapop- ulação, auxiliandousuáriosnadescobertadeitensrelevantesemdiversosdomínios.No entanto, acrescentecomplexidadedosRSslevantapreocupaçõessobresuatransparênciae interpretabilidade, especialmenteemaplicaçõesdealtoimpacto.Estadissertaçãoinvestigao potencial dosGrandesModelosdeLinguagem(LLMs)paragerarexplicaçõesautomatizadas e centradasnoserhumanoparaRSseavaliasuafidelidadeemrefletiroraciocíniointerno dos modelos.Avaliamosrecomendaçõespersonalizadasdefilmeseexplicaçõesgeradas pelo GPT-3.5Turbopormeiodeumestudocomusuários,medindoeficácia,personaliza- ção epoderdepersuasão.Umestudocomplementar,abrangendorecomendaçõesdefilmes, músicas elivrosgeradasporquatroLLMs(asaber,GPT-4o,Llama3,Gemma2eMixtral 8x7B), avaliouafidelidadedessasexplicaçõesusandoumaavaliaçãoaxiomáticabaseada no AcordodeImportânciadeCaracterísticas.Nossosresultadosrevelaramque,emboraas recomendações geradaspelosLLMstenhammelhoradoasatisfaçãodousuárioemcom- paração comseleçõesaleatórias,asexplicaçõesfrequentementenãoatendiamaoscritérios de fidelidade.Surpreendentemente,explicaçõesbaseadasempreferênciasdousuárionão foram consistentementepercebidascomomaispersonalizadas,eficazesoupersuasivasdo que explicaçõesgenéricas.Asprincipaiscontribuiçõesincluíramumaavaliaçãocentrada no usuáriodaqualidadedasexplicações,ummétodoaxiomáticoparaavaliarafidelidade, percepções sobrepreferênciasdosusuáriosetiposdeexplicações,alémdeumaanáliseda interação entreosobjetivosdasexplicações.Desafiosnotáveisidentificadosincluemasca- pacidades limitadasdepersonalizaçãodosLLMs,avariabilidadenosresultadosdevidoao comportamento nãodeterminísticoeanaturezainerentementedecaixa-pretadessesmode- los. EstetrabalhodestacaaspromessaselimitaçõesdosLLMsemRSsExplicáveisefornece uma baseparafuturaspesquisasquebusquemmelhoraroalinhamentoentreapercepçãodo usuário eafidelidadedasexplicações.Recommender systems(RSs)havebecomeubiquitous,assistingusersindiscoveringrele- vantitemsacrossvariousdomains.However,theincreasingcomplexityofRSsraisescon- cerns abouttheirtransparencyandinterpretability,particularlyinhigh-stakesapplications. This thesisinvestigatesthepotentialofLargeLanguageModels(LLMs)togenerateau- tomated, human-centeredexplanationsforRSsandassessestheirfaithfulnessinreflecting the models’internalreasoning.Weevaluatedpersonalizedmovierecommendationsand explanationsgeneratedbyGPT-3.5Turbothroughauserstudy,measuringeffectiveness, personalization, andpersuasiveness.Afollow-upstudyacrossmovie,song,andbookrec- ommendations generatedbyfourLLMs(namely,GPT-4o,Llama3,Gemma2,andMixtral 8x7B) assessedthefaithfulnessoftheseexplanationsusinganaxiomaticevaluationbased on theFeatureImportanceAgreement.OurfindingsrevealedthatwhileLLM-generatedrec- ommendations improvedusersatisfactioncomparedtorandomselections,theexplanations often failedtomeetfaithfulnesscriteria.Surprisingly,explanationsbasedonuserpreferences were notconsistentlyperceivedasmorepersonalized,effective,orpersuasivethangeneric explanations.Keycontributionsincludedauser-centricevaluationofexplanationquality, an axiomaticmethodforassessingfaithfulness,insightsintouserpreferencesandexplana- tion types,andananalysisoftheinterplaybetweenexplanationgoals.Notablechallenges identified includeLLMs’limitedpersonalizationcapabilities,variabilityinoutputsdueto non-deterministic behavior,andtheinherentblack-boxnatureofthesemodels.Thiswork highlights thepromiseandlimitationsofLLMsinExplainableRSsandprovidesafounda- tion forfutureresearchtoenhancethealignmentbetweenuserperceptionandexplanation faithfulness.CapesUniversidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGMARINHO, Leandro Balby.MARINHO, L. B.http://lattes.cnpq.br/3728312501032061CAMPELO, Cláudio Elízio Calazans.VELOSO, Adriano Alonso.SILVA, Ítallo de Sousa.2025-02-132025-03-25T18:54:28Z2025-03-252025-03-25T18:54:28Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://dspace.sti.ufcg.edu.br/handle/riufcg/41298SILVA, Ítallo de Sousa. Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations. 2025. 85 f. Dissertação (Mestrando em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2025.porFAPESQinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2025-07-24T06:12:53Zoai:dspace.sti.ufcg.edu.br:riufcg/41298Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512025-07-24T06:12:53Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations
Aproveitando LLMs para sistemas de recomendação explicáveis: explorando Percepções do usuário e fidelidade nas explicações geradas
title Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations
spellingShingle Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations
SILVA, Ítallo de Sousa.
Recuperação de Informação
Estudo de Usuário
Sistemas de Recomendação (RSs)
Grandes Modelos de Linguagem (LLMs)
Large Language Models (LLMs)
Recommendation Systems (SRs)
User Study
Information Retrieval
Ciência da Computação
title_short Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations
title_full Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations
title_fullStr Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations
title_full_unstemmed Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations
title_sort Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations
author SILVA, Ítallo de Sousa.
author_facet SILVA, Ítallo de Sousa.
author_role author
dc.contributor.none.fl_str_mv MARINHO, Leandro Balby.
MARINHO, L. B.
http://lattes.cnpq.br/3728312501032061
CAMPELO, Cláudio Elízio Calazans.
VELOSO, Adriano Alonso.
dc.contributor.author.fl_str_mv SILVA, Ítallo de Sousa.
dc.subject.por.fl_str_mv Recuperação de Informação
Estudo de Usuário
Sistemas de Recomendação (RSs)
Grandes Modelos de Linguagem (LLMs)
Large Language Models (LLMs)
Recommendation Systems (SRs)
User Study
Information Retrieval
Ciência da Computação
topic Recuperação de Informação
Estudo de Usuário
Sistemas de Recomendação (RSs)
Grandes Modelos de Linguagem (LLMs)
Large Language Models (LLMs)
Recommendation Systems (SRs)
User Study
Information Retrieval
Ciência da Computação
description Sistemas derecomendação(RSs)tornaram-secomunsnodiaadiadeboapartedapop- ulação, auxiliandousuáriosnadescobertadeitensrelevantesemdiversosdomínios.No entanto, acrescentecomplexidadedosRSslevantapreocupaçõessobresuatransparênciae interpretabilidade, especialmenteemaplicaçõesdealtoimpacto.Estadissertaçãoinvestigao potencial dosGrandesModelosdeLinguagem(LLMs)paragerarexplicaçõesautomatizadas e centradasnoserhumanoparaRSseavaliasuafidelidadeemrefletiroraciocíniointerno dos modelos.Avaliamosrecomendaçõespersonalizadasdefilmeseexplicaçõesgeradas pelo GPT-3.5Turbopormeiodeumestudocomusuários,medindoeficácia,personaliza- ção epoderdepersuasão.Umestudocomplementar,abrangendorecomendaçõesdefilmes, músicas elivrosgeradasporquatroLLMs(asaber,GPT-4o,Llama3,Gemma2eMixtral 8x7B), avaliouafidelidadedessasexplicaçõesusandoumaavaliaçãoaxiomáticabaseada no AcordodeImportânciadeCaracterísticas.Nossosresultadosrevelaramque,emboraas recomendações geradaspelosLLMstenhammelhoradoasatisfaçãodousuárioemcom- paração comseleçõesaleatórias,asexplicaçõesfrequentementenãoatendiamaoscritérios de fidelidade.Surpreendentemente,explicaçõesbaseadasempreferênciasdousuárionão foram consistentementepercebidascomomaispersonalizadas,eficazesoupersuasivasdo que explicaçõesgenéricas.Asprincipaiscontribuiçõesincluíramumaavaliaçãocentrada no usuáriodaqualidadedasexplicações,ummétodoaxiomáticoparaavaliarafidelidade, percepções sobrepreferênciasdosusuáriosetiposdeexplicações,alémdeumaanáliseda interação entreosobjetivosdasexplicações.Desafiosnotáveisidentificadosincluemasca- pacidades limitadasdepersonalizaçãodosLLMs,avariabilidadenosresultadosdevidoao comportamento nãodeterminísticoeanaturezainerentementedecaixa-pretadessesmode- los. EstetrabalhodestacaaspromessaselimitaçõesdosLLMsemRSsExplicáveisefornece uma baseparafuturaspesquisasquebusquemmelhoraroalinhamentoentreapercepçãodo usuário eafidelidadedasexplicações.
publishDate 2025
dc.date.none.fl_str_mv 2025-02-13
2025-03-25T18:54:28Z
2025-03-25
2025-03-25T18:54:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://dspace.sti.ufcg.edu.br/handle/riufcg/41298
SILVA, Ítallo de Sousa. Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations. 2025. 85 f. Dissertação (Mestrando em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2025.
url https://dspace.sti.ufcg.edu.br/handle/riufcg/41298
identifier_str_mv SILVA, Ítallo de Sousa. Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations. 2025. 85 f. Dissertação (Mestrando em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2025.
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv FAPESQ
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFCG
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Biblioteca Digital de Teses e Dissertações da UFCG
collection Biblioteca Digital de Teses e Dissertações da UFCG
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br
_version_ 1851784698448052224