Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada.
| Ano de defesa: | 2009 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Tecnologia e Recursos Naturais - CTRN PÓS-GRADUAÇÃO EM ENGENHARIA AGRÍCOLA UFCG |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://dspace.sti.ufcg.edu.br/handle/riufcg/1984 |
Resumo: | Os óleos vegetais são fontes alimentares de alto valor calórico e de ácidos graxos essenciais. Além disso, a similaridade de suas moléculas com o petrodiesel é uma das vantagens para a produção de biodiesel. No cenário mundial sua valorização vem crescendo como fator de agregação de valor de dupla competição entre alimento e de uso energético. Com isto, surge naturalmente a necessidade de mecanismos que garantam a qualidade desses produtos. Para tanto, as ferramentas disponíveis destroem a amostra, possuem baixa frequência de processamento e geram grande volume de resíduos. Objetivou-se, neste contexto, desenvolver modelos exploratórios e de calibração multivariada com medidas não destrutivas e rápidas de RMN *H de baixo campo e de PCA (Principal Components of Analisys), HCA (Hierarchical Clusters Analisys), SIMCA (Soft Independent Modelling of Class Analogy), MLR (Multiple Linear Regression), PCR (Principal Components Regression) e PLS (Partial Least Squares). Os sinais de RMN *H foram obtidos de um total de n = 65 amostras de sete classes de óleo vegetal (algodão, n = 15; soja, n = 15; azeite de oliva, n = 15; arroz, n = 5; girassol, n = 5; milho, n = 5 e canola, n = 5). As medidas foram realizadas em triplicatas autênticas usando 150,0 mL de cada amostra. A partir dos sinais obtidos foram empregadas técnicas de PCA, HCA, SIMCA, MLR, PCR e PLS. Na PCA, o gráfico dos escores evidencia a formação de classes distintas com boa separação para algodão, soja e oliva; em 4 PCs se obtém 98,4 % de variância explicada. A validação dos resultados da PCA foi executada com uma HCA, em que o comportamento observado é explicado pela composição de ácidos graxos de cada classe de óleo vegetal. Com essas informações preliminares foram desenvolvidos modelos SIMCA para o qual selecionaram-se amostras ao acaso, para constituir os conjuntos de treinamento, validação e predição. Os modelos SIMCA previram 100% de acerto para as classes de algodão, soja e oliva. Os modelos PCR e PLS para predição da viscosidade foram mais robustos em relação à MLR. Os erros relativos de predição da viscosidade em relação à medida de referência foram sempre menores que 6,3%. Diante essas observações, a RMN H1 de baixo campo e análise multivariada permitem a classificação de óleos vegetais e a predição de sua viscosidade de forma direta, não destrutiva, não invasiva, sem o uso de reagentes, sem a geração de resíduos e com maior rapidez (30 s). |
| id |
UFCG_b917c0f616fc72efcbb46d7dd6b75539 |
|---|---|
| oai_identifier_str |
oai:dspace.sti.ufcg.edu.br:riufcg/1984 |
| network_acronym_str |
UFCG |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
| repository_id_str |
|
| spelling |
Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada.Classification and prediction of the viscosity of vegetable oils using NMR measurements and multivariate analysis.Medidas RMNAnálise multivariadaClassificação da viscosidade de óleosÓleos vegetais - viscosidadeQualidade de óleos vegetaisÓleos vegetais - qualidadeVegetable oils - qualityVegetable oils - viscosityEngenharia Agrícola.Os óleos vegetais são fontes alimentares de alto valor calórico e de ácidos graxos essenciais. Além disso, a similaridade de suas moléculas com o petrodiesel é uma das vantagens para a produção de biodiesel. No cenário mundial sua valorização vem crescendo como fator de agregação de valor de dupla competição entre alimento e de uso energético. Com isto, surge naturalmente a necessidade de mecanismos que garantam a qualidade desses produtos. Para tanto, as ferramentas disponíveis destroem a amostra, possuem baixa frequência de processamento e geram grande volume de resíduos. Objetivou-se, neste contexto, desenvolver modelos exploratórios e de calibração multivariada com medidas não destrutivas e rápidas de RMN *H de baixo campo e de PCA (Principal Components of Analisys), HCA (Hierarchical Clusters Analisys), SIMCA (Soft Independent Modelling of Class Analogy), MLR (Multiple Linear Regression), PCR (Principal Components Regression) e PLS (Partial Least Squares). Os sinais de RMN *H foram obtidos de um total de n = 65 amostras de sete classes de óleo vegetal (algodão, n = 15; soja, n = 15; azeite de oliva, n = 15; arroz, n = 5; girassol, n = 5; milho, n = 5 e canola, n = 5). As medidas foram realizadas em triplicatas autênticas usando 150,0 mL de cada amostra. A partir dos sinais obtidos foram empregadas técnicas de PCA, HCA, SIMCA, MLR, PCR e PLS. Na PCA, o gráfico dos escores evidencia a formação de classes distintas com boa separação para algodão, soja e oliva; em 4 PCs se obtém 98,4 % de variância explicada. A validação dos resultados da PCA foi executada com uma HCA, em que o comportamento observado é explicado pela composição de ácidos graxos de cada classe de óleo vegetal. Com essas informações preliminares foram desenvolvidos modelos SIMCA para o qual selecionaram-se amostras ao acaso, para constituir os conjuntos de treinamento, validação e predição. Os modelos SIMCA previram 100% de acerto para as classes de algodão, soja e oliva. Os modelos PCR e PLS para predição da viscosidade foram mais robustos em relação à MLR. Os erros relativos de predição da viscosidade em relação à medida de referência foram sempre menores que 6,3%. Diante essas observações, a RMN H1 de baixo campo e análise multivariada permitem a classificação de óleos vegetais e a predição de sua viscosidade de forma direta, não destrutiva, não invasiva, sem o uso de reagentes, sem a geração de resíduos e com maior rapidez (30 s).Vegetable oils are one of the most caloric food sources. Furthermore, the similarity of their fatty acid chains with petrodiesel is one of the advantages of biodiesel production. In the world, its use is growing as a source of added value of dual competition between food and energy use. But the tools used in the process of quality control of vegetable oils have technical limitations, such as the destruction of the sample, low frequency processing and generation of large volumes of waste. In this context, it was aimed to develop models exploratory of the multivariate calibration using non-destructive and rapid measures of low-field IH NMR and PCA, HCA, SIMCA, MLR, PCR and PLS. The signs of relaxation in NMR of T2 were obtained from a total of 65 samples of seven kinds of vegetable oil (cotton, n = 15; soybean, n = 15, olive oil, n = 15; rice, n = 5; sunflower , n = 5; maize, n = 5; canola, n = 5). The measurements were performed in a total of three replicates authentic using 150 mL of sample. The instrument used was a spectrometer 7005 with Oxford MQA electromagnet of 0.47 T of 5 MHz from the signal obtained, to use the techniques of PCA, HCA, SIMCA, MLR, PCR and PLS. In PCA, the graph shows the training of scores of different classes with good separation for cotton, soybean and olive. On four PCs you get 98.4% of variance explained. To validate the results of a PCA was performed HCA. The graph shows the dendogram obtained with an anomalous two samples of soybean and one olive. Moreover, there is a greater similarity between the classes of soybean and olive than for cotton. The observed behavior is explained by the distribution of fatty acids in triglycerides of molecules of each class. With this preliminary information SIMCA models were developed. For this, the samples were selected randomly to be the sets of training, validation and prediction. AH samples were correctly classified at 95% probability. The PCR of multivariate calibration model to predict the viscosity was more robust for MLR and PLS. The relative errors of prediction of the viscosity compared to the reference were less than 6,3%. Considering the observations, the *H low field NMR and multivariate analysis allow the classification of vegetable oils and their prediction of viscosity of a direct, non-destructive, non-invasive, without generating waste and rapid (30s).CNPqUniversidade Federal de Campina GrandeBrasilCentro de Tecnologia e Recursos Naturais - CTRNPÓS-GRADUAÇÃO EM ENGENHARIA AGRÍCOLAUFCGDUARTE, Maria Elita Martins.DUARTE, M. E. M.http://lattes.cnpq.br/4768784008798361MEDEIROS, Everaldo Paulo de.MEDEIROS, E. P.http://lattes.cnpq.br/0883967020061181PEDROZA, Juarez Paz.GOMES, Josivanda Palmeira.PÊ, Patrícia Rodrigues.2009-082018-10-16T17:25:05Z2018-10-162018-10-16T17:25:05Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://dspace.sti.ufcg.edu.br/handle/riufcg/1984PÊ, Patrícia Rodrigues. Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. 2009. 68f. (Dissertação de Mestrado em Engenharia Agrícola), Programa de Pós-graduação em Engenharia Agrícola, Centro de Tecnologias e Recursos Naturais, Universidade Federal de Campina Grande – Paraíba – Brasil, 2009. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/1984porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2025-07-24T06:31:28Zoai:dspace.sti.ufcg.edu.br:riufcg/1984Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512025-07-24T06:31:28Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false |
| dc.title.none.fl_str_mv |
Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. Classification and prediction of the viscosity of vegetable oils using NMR measurements and multivariate analysis. |
| title |
Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. |
| spellingShingle |
Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. PÊ, Patrícia Rodrigues. Medidas RMN Análise multivariada Classificação da viscosidade de óleos Óleos vegetais - viscosidade Qualidade de óleos vegetais Óleos vegetais - qualidade Vegetable oils - quality Vegetable oils - viscosity Engenharia Agrícola. |
| title_short |
Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. |
| title_full |
Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. |
| title_fullStr |
Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. |
| title_full_unstemmed |
Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. |
| title_sort |
Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. |
| author |
PÊ, Patrícia Rodrigues. |
| author_facet |
PÊ, Patrícia Rodrigues. |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
DUARTE, Maria Elita Martins. DUARTE, M. E. M. http://lattes.cnpq.br/4768784008798361 MEDEIROS, Everaldo Paulo de. MEDEIROS, E. P. http://lattes.cnpq.br/0883967020061181 PEDROZA, Juarez Paz. GOMES, Josivanda Palmeira. |
| dc.contributor.author.fl_str_mv |
PÊ, Patrícia Rodrigues. |
| dc.subject.por.fl_str_mv |
Medidas RMN Análise multivariada Classificação da viscosidade de óleos Óleos vegetais - viscosidade Qualidade de óleos vegetais Óleos vegetais - qualidade Vegetable oils - quality Vegetable oils - viscosity Engenharia Agrícola. |
| topic |
Medidas RMN Análise multivariada Classificação da viscosidade de óleos Óleos vegetais - viscosidade Qualidade de óleos vegetais Óleos vegetais - qualidade Vegetable oils - quality Vegetable oils - viscosity Engenharia Agrícola. |
| description |
Os óleos vegetais são fontes alimentares de alto valor calórico e de ácidos graxos essenciais. Além disso, a similaridade de suas moléculas com o petrodiesel é uma das vantagens para a produção de biodiesel. No cenário mundial sua valorização vem crescendo como fator de agregação de valor de dupla competição entre alimento e de uso energético. Com isto, surge naturalmente a necessidade de mecanismos que garantam a qualidade desses produtos. Para tanto, as ferramentas disponíveis destroem a amostra, possuem baixa frequência de processamento e geram grande volume de resíduos. Objetivou-se, neste contexto, desenvolver modelos exploratórios e de calibração multivariada com medidas não destrutivas e rápidas de RMN *H de baixo campo e de PCA (Principal Components of Analisys), HCA (Hierarchical Clusters Analisys), SIMCA (Soft Independent Modelling of Class Analogy), MLR (Multiple Linear Regression), PCR (Principal Components Regression) e PLS (Partial Least Squares). Os sinais de RMN *H foram obtidos de um total de n = 65 amostras de sete classes de óleo vegetal (algodão, n = 15; soja, n = 15; azeite de oliva, n = 15; arroz, n = 5; girassol, n = 5; milho, n = 5 e canola, n = 5). As medidas foram realizadas em triplicatas autênticas usando 150,0 mL de cada amostra. A partir dos sinais obtidos foram empregadas técnicas de PCA, HCA, SIMCA, MLR, PCR e PLS. Na PCA, o gráfico dos escores evidencia a formação de classes distintas com boa separação para algodão, soja e oliva; em 4 PCs se obtém 98,4 % de variância explicada. A validação dos resultados da PCA foi executada com uma HCA, em que o comportamento observado é explicado pela composição de ácidos graxos de cada classe de óleo vegetal. Com essas informações preliminares foram desenvolvidos modelos SIMCA para o qual selecionaram-se amostras ao acaso, para constituir os conjuntos de treinamento, validação e predição. Os modelos SIMCA previram 100% de acerto para as classes de algodão, soja e oliva. Os modelos PCR e PLS para predição da viscosidade foram mais robustos em relação à MLR. Os erros relativos de predição da viscosidade em relação à medida de referência foram sempre menores que 6,3%. Diante essas observações, a RMN H1 de baixo campo e análise multivariada permitem a classificação de óleos vegetais e a predição de sua viscosidade de forma direta, não destrutiva, não invasiva, sem o uso de reagentes, sem a geração de resíduos e com maior rapidez (30 s). |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009-08 2018-10-16T17:25:05Z 2018-10-16 2018-10-16T17:25:05Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://dspace.sti.ufcg.edu.br/handle/riufcg/1984 PÊ, Patrícia Rodrigues. Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. 2009. 68f. (Dissertação de Mestrado em Engenharia Agrícola), Programa de Pós-graduação em Engenharia Agrícola, Centro de Tecnologias e Recursos Naturais, Universidade Federal de Campina Grande – Paraíba – Brasil, 2009. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/1984 |
| url |
https://dspace.sti.ufcg.edu.br/handle/riufcg/1984 |
| identifier_str_mv |
PÊ, Patrícia Rodrigues. Classificação e predição da viscosidade de óleos vegetais usando medidas de RMN e análise multivariada. 2009. 68f. (Dissertação de Mestrado em Engenharia Agrícola), Programa de Pós-graduação em Engenharia Agrícola, Centro de Tecnologias e Recursos Naturais, Universidade Federal de Campina Grande – Paraíba – Brasil, 2009. Disponível em: https://dspace.sti.ufcg.edu.br/handle/riufcg/1984 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Tecnologia e Recursos Naturais - CTRN PÓS-GRADUAÇÃO EM ENGENHARIA AGRÍCOLA UFCG |
| publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Tecnologia e Recursos Naturais - CTRN PÓS-GRADUAÇÃO EM ENGENHARIA AGRÍCOLA UFCG |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
| instname_str |
Universidade Federal de Campina Grande (UFCG) |
| instacron_str |
UFCG |
| institution |
UFCG |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
| collection |
Biblioteca Digital de Teses e Dissertações da UFCG |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG) |
| repository.mail.fl_str_mv |
bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br |
| _version_ |
1851784603446018048 |