A conjectura de Euler sobre somas de potências quárticas de números inteiros
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Mestrado em Matemática Centro de Ciências Exatas UFES Programa de Pós-Graduação em Matemática |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.ufes.br/handle/10/7410 |
Resumo: | In 1772, Leonard Euler conjectured that the sum of n powers of positive integers of a given exponent n would also be such a power. However, if the number of powers in this sum is less than the exponent, then such sum could not result in an exponent power n. In the present work we will focus on the n = 4 case of the Euler’s conjecture. In a first approach, we will present a counterexample to the conjecture, that is, we will display positive whole solution for the diophantine equation a 4 +b 4 +c 4 = e 4 , which is equivalent to verify that the set of rational points of the surface S1 : r 4 + s 4 + t 4 = 1 is not empty. We will use the theory of elliptic curves and concepts of Number Theory, such as quadratic reciprocity and Legendre’s theorem, in the construction of a method to obtain the counterexample. In a second approach, we will use the group structure of an elliptic curve to show that there is an infinity of positive integer solutions for the above Diophantine equation if we add a quartic power of an integer in that sum. |
| id |
UFES_84d660fece0f07ec91c02a420714ab17 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufes.br:10/7410 |
| network_acronym_str |
UFES |
| network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository_id_str |
|
| spelling |
A conjectura de Euler sobre somas de potências quárticas de números inteirosEuler conjectureElliptic curvesDiophantine equationsEuler, Conjectura deEquações diofantinasCurvas elípticasMatemática51In 1772, Leonard Euler conjectured that the sum of n powers of positive integers of a given exponent n would also be such a power. However, if the number of powers in this sum is less than the exponent, then such sum could not result in an exponent power n. In the present work we will focus on the n = 4 case of the Euler’s conjecture. In a first approach, we will present a counterexample to the conjecture, that is, we will display positive whole solution for the diophantine equation a 4 +b 4 +c 4 = e 4 , which is equivalent to verify that the set of rational points of the surface S1 : r 4 + s 4 + t 4 = 1 is not empty. We will use the theory of elliptic curves and concepts of Number Theory, such as quadratic reciprocity and Legendre’s theorem, in the construction of a method to obtain the counterexample. In a second approach, we will use the group structure of an elliptic curve to show that there is an infinity of positive integer solutions for the above Diophantine equation if we add a quartic power of an integer in that sum.Em 1772, Leonard Euler conjecturou que a soma de n potˆencias de n´umeros inteiros positivos de um dado expoente n tamb´em seria uma tal potˆencia. Contudo, se o n´umero de potˆencias nessa soma fosse inferior ao expoente, ent˜ao tal soma n˜ao poderia resultar em uma potˆencia de expoente n. No presente trabalho vamos nos concentrar no caso n = 4 da Conjectura de Euler. Numa primeira abordagem, vamos apresentar um contraexemplo para a conjectura, ou seja, vamos exibir solu¸c˜ao inteira positiva para a equa¸c˜ao diofantina a 4 + b 4 + c 4 = e 4 , que ´e equivalente a verificar que o conjunto dos pontos racionais da superf´ıcie S1 : r 4 + s 4 + t 4 = 1 ´e n˜ao vazio. Usaremos a teoria de curvas el´ıpticas e conceitos da Teoria dos N´umeros, como a reciprocidade quadr´atica e o teorema de Legendre, na constru¸c˜ao de um m´etodo para obter o contraexemplo. Em uma segunda abordagem, usaremos a estrutura de grupo de uma curva el´ıptica para mostrar que existe uma infinidade de solu¸c˜oes inteiras positivas para a equa¸c˜ao diofantina acima, se acrescentarmos uma quarta potˆencia de um n´umero inteiro nessa soma.Universidade Federal do Espírito SantoBRMestrado em MatemáticaCentro de Ciências ExatasUFESPrograma de Pós-Graduação em MatemáticaOliveira, José Gilvan dePassamani, Apoenã PassosKaygorodov, IvanConte, Luciane QuoosLopes, Gislayni Telles Vieira Santana2018-08-01T22:00:14Z2018-08-012018-08-01T22:00:14Z2017-07-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/7410porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-06-30T16:36:55Zoai:repositorio.ufes.br:10/7410Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-06-30T16:36:55Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
| dc.title.none.fl_str_mv |
A conjectura de Euler sobre somas de potências quárticas de números inteiros |
| title |
A conjectura de Euler sobre somas de potências quárticas de números inteiros |
| spellingShingle |
A conjectura de Euler sobre somas de potências quárticas de números inteiros Lopes, Gislayni Telles Vieira Santana Euler conjecture Elliptic curves Diophantine equations Euler, Conjectura de Equações diofantinas Curvas elípticas Matemática 51 |
| title_short |
A conjectura de Euler sobre somas de potências quárticas de números inteiros |
| title_full |
A conjectura de Euler sobre somas de potências quárticas de números inteiros |
| title_fullStr |
A conjectura de Euler sobre somas de potências quárticas de números inteiros |
| title_full_unstemmed |
A conjectura de Euler sobre somas de potências quárticas de números inteiros |
| title_sort |
A conjectura de Euler sobre somas de potências quárticas de números inteiros |
| author |
Lopes, Gislayni Telles Vieira Santana |
| author_facet |
Lopes, Gislayni Telles Vieira Santana |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Oliveira, José Gilvan de Passamani, Apoenã Passos Kaygorodov, Ivan Conte, Luciane Quoos |
| dc.contributor.author.fl_str_mv |
Lopes, Gislayni Telles Vieira Santana |
| dc.subject.por.fl_str_mv |
Euler conjecture Elliptic curves Diophantine equations Euler, Conjectura de Equações diofantinas Curvas elípticas Matemática 51 |
| topic |
Euler conjecture Elliptic curves Diophantine equations Euler, Conjectura de Equações diofantinas Curvas elípticas Matemática 51 |
| description |
In 1772, Leonard Euler conjectured that the sum of n powers of positive integers of a given exponent n would also be such a power. However, if the number of powers in this sum is less than the exponent, then such sum could not result in an exponent power n. In the present work we will focus on the n = 4 case of the Euler’s conjecture. In a first approach, we will present a counterexample to the conjecture, that is, we will display positive whole solution for the diophantine equation a 4 +b 4 +c 4 = e 4 , which is equivalent to verify that the set of rational points of the surface S1 : r 4 + s 4 + t 4 = 1 is not empty. We will use the theory of elliptic curves and concepts of Number Theory, such as quadratic reciprocity and Legendre’s theorem, in the construction of a method to obtain the counterexample. In a second approach, we will use the group structure of an elliptic curve to show that there is an infinity of positive integer solutions for the above Diophantine equation if we add a quartic power of an integer in that sum. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-07-11 2018-08-01T22:00:14Z 2018-08-01 2018-08-01T22:00:14Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/7410 |
| url |
http://repositorio.ufes.br/handle/10/7410 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
Text application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Matemática Centro de Ciências Exatas UFES Programa de Pós-Graduação em Matemática |
| publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Matemática Centro de Ciências Exatas UFES Programa de Pós-Graduação em Matemática |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
| instname_str |
Universidade Federal do Espírito Santo (UFES) |
| instacron_str |
UFES |
| institution |
UFES |
| reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
| repository.mail.fl_str_mv |
riufes@ufes.br |
| _version_ |
1834479038294392832 |