Brain-Computer Interface for Post-Stroke Upper-Limb Rehabilitation: From Simple to Complex Motor Imagery Tasks

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Mendez, Cristian David Guerrero
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/12575
Resumo: Motor Imagery (MI) of simple tasks such as left and right hand movement, hand opening and closing, and foot or tongue movement has been deeply studied in the literature. Despite the great findings so far, according to the potential use for rehabilitation, there are still many challenges in the scientific community focused on the exploration of more tasks and protocols focused on MI of complex movements, as well as the use of robotic devices for motor assistance considering Activities of Daily Living (ADLs). However, Electroencephalography (EEG)-MI based paradigms have not yet been fully explored in the literature. This master dissertation aims at exploring complex MI tasks assisted mainly by an upper limb exoskeleton and a first-person 2D virtual reality. For this, the perspective from simple MI to complex MI tasks, including those assisted by robotic systems, was evaluated. For simple MI tasks (ST-Set dataset), a public database containing left and right hand MI was used. On the other hand, for exoskeleton MI taks (ET-Set dataset) a proprietary database of 10 healthy subjects was recorded combining MI together with assisted arm flexion and extension movement at two different speeds (30 rpm and 85 rpm). Finally, for MI of complex tasks (CT-Set dataset) a proprietary database of 30 healthy subjects and 7 post-stroke patients was recorded, assisting MI with a first-person 2D virtual reality for the generation of the Action Observation (AO). Different computational techniques were evaluated, including three supervised methods based on Common Spatial Patterns (CSP), two unsupervised method approaches based on Riemannian Geometry (RG), and three variations of methods based on Deep Learning (DL). Additionally, two classifiers Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) were evaluated for the supervised and unsupervised methods. Furthermore, two strategies for window segmentation were evaluated. As results, potential performance was found using the DL methods with Accuracy (ACC) and False Positive Rate (FPR) of approximately 0.6 and 0.45 for ST-Set, 0.98 and 0.05 for ET-Set, and 0.95 and 0.06 for CT-Set (0.8 and 0.22 for post-stroke patients), respectively. Next, RG achieved high performance levels with ACC and FPR of approximately 0.75 and 0.25 for ST-Set, 0.9 and 0.15 for ET-Set, and 0.73 and 0.27 for CT-Set (0.7and 0.3 for post-stroke), respectively. Finally, the CSP-based methods presented low performance with ACC and FPR of 0.55 and 0.49 for all three datasets. The results allow us to conclude that the presented methodologies of complex MI tasks, as well as the implemented computational variations, are feasible and suitable for the design and implementation of more robust Brain Computer Interface (BCI) systems, allowing a more impactful neurorehabilitation for ADLs recovery in post-stroke patients. In addition, improvements in Human-Machine Interaction (HMI) can be derived, generating increases in restoration due to improvements in usability, controllability and reliability of processes. The novel approaches presented here leave the door open to explore new paradigms, allowing to study the brain effects that occur during these tasks, in order to increase the understanding of the Central Nervous System (CNS).
id UFES_ac5ff16cda0b5d6ff107bb2e59e4a8a8
oai_identifier_str oai:repositorio.ufes.br:10/12575
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str
spelling Brain-Computer Interface for Post-Stroke Upper-Limb Rehabilitation: From Simple to Complex Motor Imagery TasksAprendizado do computadorProcessamento de sinaisAcidente vascular cerebralInterface Cérebro-ComputadorTecnologia de reabilitaçãoEngenharia ElétricaMotor Imagery (MI) of simple tasks such as left and right hand movement, hand opening and closing, and foot or tongue movement has been deeply studied in the literature. Despite the great findings so far, according to the potential use for rehabilitation, there are still many challenges in the scientific community focused on the exploration of more tasks and protocols focused on MI of complex movements, as well as the use of robotic devices for motor assistance considering Activities of Daily Living (ADLs). However, Electroencephalography (EEG)-MI based paradigms have not yet been fully explored in the literature. This master dissertation aims at exploring complex MI tasks assisted mainly by an upper limb exoskeleton and a first-person 2D virtual reality. For this, the perspective from simple MI to complex MI tasks, including those assisted by robotic systems, was evaluated. For simple MI tasks (ST-Set dataset), a public database containing left and right hand MI was used. On the other hand, for exoskeleton MI taks (ET-Set dataset) a proprietary database of 10 healthy subjects was recorded combining MI together with assisted arm flexion and extension movement at two different speeds (30 rpm and 85 rpm). Finally, for MI of complex tasks (CT-Set dataset) a proprietary database of 30 healthy subjects and 7 post-stroke patients was recorded, assisting MI with a first-person 2D virtual reality for the generation of the Action Observation (AO). Different computational techniques were evaluated, including three supervised methods based on Common Spatial Patterns (CSP), two unsupervised method approaches based on Riemannian Geometry (RG), and three variations of methods based on Deep Learning (DL). Additionally, two classifiers Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) were evaluated for the supervised and unsupervised methods. Furthermore, two strategies for window segmentation were evaluated. As results, potential performance was found using the DL methods with Accuracy (ACC) and False Positive Rate (FPR) of approximately 0.6 and 0.45 for ST-Set, 0.98 and 0.05 for ET-Set, and 0.95 and 0.06 for CT-Set (0.8 and 0.22 for post-stroke patients), respectively. Next, RG achieved high performance levels with ACC and FPR of approximately 0.75 and 0.25 for ST-Set, 0.9 and 0.15 for ET-Set, and 0.73 and 0.27 for CT-Set (0.7and 0.3 for post-stroke), respectively. Finally, the CSP-based methods presented low performance with ACC and FPR of 0.55 and 0.49 for all three datasets. The results allow us to conclude that the presented methodologies of complex MI tasks, as well as the implemented computational variations, are feasible and suitable for the design and implementation of more robust Brain Computer Interface (BCI) systems, allowing a more impactful neurorehabilitation for ADLs recovery in post-stroke patients. In addition, improvements in Human-Machine Interaction (HMI) can be derived, generating increases in restoration due to improvements in usability, controllability and reliability of processes. The novel approaches presented here leave the door open to explore new paradigms, allowing to study the brain effects that occur during these tasks, in order to increase the understanding of the Central Nervous System (CNS).A imagética motora (MI) de tarefas simples, como o movimento da mão esquerda e direita, a abertura e o fechamento da mão e o movimento do pé ou da língua, foi profundamente estudada na literatura. Apesar das grandes descobertas até o momento, de acordo com o uso potencial para a reabilitação, ainda há muitos desafios na comunidade científica voltados para a exploração de mais tarefas e protocolos focados na MI de movimentos complexos, bem como o uso de dispositivos robóticos para assistência motora considerando as Atividades da Vida Diária ( ADLs). Entretanto, os paradigmas baseados em eletroencefalografia (EEG) - MI ainda não foram totalmente explorados na literatura. Esta dissertação de mestrado tem como objetivo explorar tarefas complexas de MI assistidas principalmente por um exoesqueleto de membro superior e uma realidade virtual 2D em primeira pessoa. Para isso, foi avaliada a perspectiva desde tarefas simples até tarefas complexas de MI, incluindo aquelas assistidas por sistemas robóticos. Para as tarefas simples de MI (conjunto de dados ST-Set), foi usado um banco de dados público contendo a MI da mão esquerda e direita. Por outro lado, para as tarefas de MI do exoesqueleto (conjunto de dados ET-Set), foi registrado um banco de dados próprio de 10 indivíduos saudáveis, combinando a MI com o movimento assistido de flexão e extensão do braço em duas velocidades diferentes (30 rpm e 85 rpm). Finalmente, para o MI de tarefas complexas (conjunto de dados CT-Set), foi registrado um banco de dados próprio de 30 indivíduos saudáveis e 7 pacientes pós-AVC, auxiliando o MI com uma realidade virtual 2D em primeira pessoa para a geração da observação de ação (AO). Diferentes técnicas computacionais foram avaliadas, incluindo três métodos supervisionados baseados em Padrões Espaciais Comuns (CSP), duas abordagens de métodos não supervisionados baseados em Geometria Riemanniana (RG) e três variações de métodos baseados em Aprendizagem Profunda (DL). Além disso, dois classificadores Linear Discriminant Analysis (LDA) e Support Vector Machine (SVM) foram avaliados para os métodos supervisionados e não supervisionados. Também foram avaliadas duas estratégias para segmentação de janelas. Como resultados, foi encontrado um desempenho potencial usando os métodos DL com Acurácia (ACC) e Taxa de Falsos Positivos (FPR) de aproximadamente 0,6 e 0,45 para o ST-Set, 0,98 e 0,05 para o ET-Set e 0,95 e 0,06 para o CT-Set (0,8 e 0,22 para pacientes pós-AVC), respectivamente. Em seguida, o RG alcançou altos níveis de desempenho com ACC e FPR de aproximadamente 0,75 e 0,25 para ST-Set, 0,9 e 0,15 para ET-Set e 0,73 e 0,27 para CT-Set (0,7 e 0,3 para p´os-AVC), respectivamente. Finalmente, os métodos baseados em CSP apresentaram baixo desempenho com ACC e FPR de 0,55 e 0,49 para os três conjuntos de dados. Os resultados nos permitem concluir que as metodologias apresentadas de tarefas complexas de MI, bem como as variações computacionais implementadas, são viáveis e adequadas para o design e a implementação de sistemas de Interface Cérebro-Computador (BCI) mais robustos, permitindo uma neurorreabilitação mais impactante para a recuperação de ADLs em pacientes pós-AVC. Além disso, é possível obter melhorias na Interação Homem-Máquina (HMI), gerando aumentos na restauração devido a melhorias na usabilidade, controlabilidade e confiabilidade dos processos. As novas abordagens apresentadas aqui deixam a porta aberta para a exploração de novos paradigmas, permitindo o estudo dos efeitos cerebrais que ocorrem durante essas tarefas, a fim de aumentar a compreensão do Sistema Nervoso Central (CNS).Universidade Federal do Espírito SantoBRMestrado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaBastos Filho, Teodiano Freirehttps://orcid.org/0000000211852773http://lattes.cnpq.br/3761585497791105Rodriguez, Denis DelisleOlaya, Andres Felipe RuizMendez, Cristian David Guerrero2024-05-29T20:55:28Z2024-05-29T20:55:28Z2023-12-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/12575porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-12-09T22:14:15Zoai:repositorio.ufes.br:10/12575Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-12-09T22:14:15Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Brain-Computer Interface for Post-Stroke Upper-Limb Rehabilitation: From Simple to Complex Motor Imagery Tasks
title Brain-Computer Interface for Post-Stroke Upper-Limb Rehabilitation: From Simple to Complex Motor Imagery Tasks
spellingShingle Brain-Computer Interface for Post-Stroke Upper-Limb Rehabilitation: From Simple to Complex Motor Imagery Tasks
Mendez, Cristian David Guerrero
Aprendizado do computador
Processamento de sinais
Acidente vascular cerebral
Interface Cérebro-Computador
Tecnologia de reabilitação
Engenharia Elétrica
title_short Brain-Computer Interface for Post-Stroke Upper-Limb Rehabilitation: From Simple to Complex Motor Imagery Tasks
title_full Brain-Computer Interface for Post-Stroke Upper-Limb Rehabilitation: From Simple to Complex Motor Imagery Tasks
title_fullStr Brain-Computer Interface for Post-Stroke Upper-Limb Rehabilitation: From Simple to Complex Motor Imagery Tasks
title_full_unstemmed Brain-Computer Interface for Post-Stroke Upper-Limb Rehabilitation: From Simple to Complex Motor Imagery Tasks
title_sort Brain-Computer Interface for Post-Stroke Upper-Limb Rehabilitation: From Simple to Complex Motor Imagery Tasks
author Mendez, Cristian David Guerrero
author_facet Mendez, Cristian David Guerrero
author_role author
dc.contributor.none.fl_str_mv Bastos Filho, Teodiano Freire
https://orcid.org/0000000211852773
http://lattes.cnpq.br/3761585497791105
Rodriguez, Denis Delisle
Olaya, Andres Felipe Ruiz
dc.contributor.author.fl_str_mv Mendez, Cristian David Guerrero
dc.subject.por.fl_str_mv Aprendizado do computador
Processamento de sinais
Acidente vascular cerebral
Interface Cérebro-Computador
Tecnologia de reabilitação
Engenharia Elétrica
topic Aprendizado do computador
Processamento de sinais
Acidente vascular cerebral
Interface Cérebro-Computador
Tecnologia de reabilitação
Engenharia Elétrica
description Motor Imagery (MI) of simple tasks such as left and right hand movement, hand opening and closing, and foot or tongue movement has been deeply studied in the literature. Despite the great findings so far, according to the potential use for rehabilitation, there are still many challenges in the scientific community focused on the exploration of more tasks and protocols focused on MI of complex movements, as well as the use of robotic devices for motor assistance considering Activities of Daily Living (ADLs). However, Electroencephalography (EEG)-MI based paradigms have not yet been fully explored in the literature. This master dissertation aims at exploring complex MI tasks assisted mainly by an upper limb exoskeleton and a first-person 2D virtual reality. For this, the perspective from simple MI to complex MI tasks, including those assisted by robotic systems, was evaluated. For simple MI tasks (ST-Set dataset), a public database containing left and right hand MI was used. On the other hand, for exoskeleton MI taks (ET-Set dataset) a proprietary database of 10 healthy subjects was recorded combining MI together with assisted arm flexion and extension movement at two different speeds (30 rpm and 85 rpm). Finally, for MI of complex tasks (CT-Set dataset) a proprietary database of 30 healthy subjects and 7 post-stroke patients was recorded, assisting MI with a first-person 2D virtual reality for the generation of the Action Observation (AO). Different computational techniques were evaluated, including three supervised methods based on Common Spatial Patterns (CSP), two unsupervised method approaches based on Riemannian Geometry (RG), and three variations of methods based on Deep Learning (DL). Additionally, two classifiers Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) were evaluated for the supervised and unsupervised methods. Furthermore, two strategies for window segmentation were evaluated. As results, potential performance was found using the DL methods with Accuracy (ACC) and False Positive Rate (FPR) of approximately 0.6 and 0.45 for ST-Set, 0.98 and 0.05 for ET-Set, and 0.95 and 0.06 for CT-Set (0.8 and 0.22 for post-stroke patients), respectively. Next, RG achieved high performance levels with ACC and FPR of approximately 0.75 and 0.25 for ST-Set, 0.9 and 0.15 for ET-Set, and 0.73 and 0.27 for CT-Set (0.7and 0.3 for post-stroke), respectively. Finally, the CSP-based methods presented low performance with ACC and FPR of 0.55 and 0.49 for all three datasets. The results allow us to conclude that the presented methodologies of complex MI tasks, as well as the implemented computational variations, are feasible and suitable for the design and implementation of more robust Brain Computer Interface (BCI) systems, allowing a more impactful neurorehabilitation for ADLs recovery in post-stroke patients. In addition, improvements in Human-Machine Interaction (HMI) can be derived, generating increases in restoration due to improvements in usability, controllability and reliability of processes. The novel approaches presented here leave the door open to explore new paradigms, allowing to study the brain effects that occur during these tasks, in order to increase the understanding of the Central Nervous System (CNS).
publishDate 2023
dc.date.none.fl_str_mv 2023-12-11
2024-05-29T20:55:28Z
2024-05-29T20:55:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/12575
url http://repositorio.ufes.br/handle/10/12575
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv riufes@ufes.br
_version_ 1834479111784890368