Predição de desempenho no Moodle usando princípios da andragogia

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Trindade, Fernando Ribeiro lattes
Orientador(a): Ambrósio, Ana Paula Laboissière lattes
Banca de defesa: Rodrigues, Cássio, Siqueira, Sean Wolfgand Matsui, Ferreira, Deller James
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/38995/001300000bvdn
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
EaD
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/10632
Resumo: According to current literature, the teaching skills of tutors are essential to ensure excellence in teaching and, consequently, the interest of students in courses. In online teaching environments, students and tutors interact with each other through the various communication resources provided by virtual learning environments (VLE). With this, a large amount of educational data is collected by AVAS’s, making it possible to carry out analyzes of these data. However, in the academic literature, few studies have been conducted in order to collect behavioral data from tutors and use this data to make the prediction of students' school performance. Therefore, in this dissertation a framework of tutoring characteristics was elaborated correlated to the good school performance of students, and this framework was used to guide the data collection of tutors, which were used to make the prediction of student performance. The tutoring characteristics included in the framework were extracted from previous research, which investigated each tutoring attribute, and from tutoring attributes desired by Andragogy. The prediction of students' performance was carried out from the development of an extension of the Moodle Predicta tool, which performs classification of students as to possible failure or approval. The prediction of student performance is made from the behavioral data of students and tutors. The implementation of the prediction was preceded by a performance analysis of the classifying algorithms, and the implemented classifier was RandomForest, which achieved better performance according to the AUC metric. Educational data from Moodle from the Goiás Judicial School (EJUG) was used in a case study. Two exploratory data analyzes were conducted to learn about the courses and investigate the tutoring characteristics of the framework in EJUG tutors. The data from EJUG tutors were included in the classification model, used to predict student performance, showing that the actions of tutors can impact students' academic achievements.
id UFG-2_c1bcaedbbb6424bd677412d2d8487274
oai_identifier_str oai:repositorio.bc.ufg.br:tede/10632
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Ambrósio, Ana Paula Laboissièrehttp://lattes.cnpq.br/0900834483461062Ferreira, Deller Jameshttp://lattes.cnpq.br/1646629818203057Rodrigues, CássioSiqueira, Sean Wolfgand MatsuiFerreira, Deller Jameshttp://lattes.cnpq.br/1120552806624688Trindade, Fernando Ribeiro2020-09-09T18:48:27Z2020-09-09T18:48:27Z2020-05-15TRINDADE, F. R. Predição de desempenho no Moodle usando princípios da andragogia. 2020. 147 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2020.http://repositorio.bc.ufg.br/tede/handle/tede/10632ark:/38995/001300000bvdnAccording to current literature, the teaching skills of tutors are essential to ensure excellence in teaching and, consequently, the interest of students in courses. In online teaching environments, students and tutors interact with each other through the various communication resources provided by virtual learning environments (VLE). With this, a large amount of educational data is collected by AVAS’s, making it possible to carry out analyzes of these data. However, in the academic literature, few studies have been conducted in order to collect behavioral data from tutors and use this data to make the prediction of students' school performance. Therefore, in this dissertation a framework of tutoring characteristics was elaborated correlated to the good school performance of students, and this framework was used to guide the data collection of tutors, which were used to make the prediction of student performance. The tutoring characteristics included in the framework were extracted from previous research, which investigated each tutoring attribute, and from tutoring attributes desired by Andragogy. The prediction of students' performance was carried out from the development of an extension of the Moodle Predicta tool, which performs classification of students as to possible failure or approval. The prediction of student performance is made from the behavioral data of students and tutors. The implementation of the prediction was preceded by a performance analysis of the classifying algorithms, and the implemented classifier was RandomForest, which achieved better performance according to the AUC metric. Educational data from Moodle from the Goiás Judicial School (EJUG) was used in a case study. Two exploratory data analyzes were conducted to learn about the courses and investigate the tutoring characteristics of the framework in EJUG tutors. The data from EJUG tutors were included in the classification model, used to predict student performance, showing that the actions of tutors can impact students' academic achievements.De acordo com a literatura atual, as habilidades de docência dos tutores são fundamentais para se garantir a excelência no ensino e, consequentemente, o interesse dos alunos nos cursos. Em ambientes de ensino online alunos e tutores interagem entre si por meio dos diversos recursos de comunicação disponibilizados pelos ambientes virtuais de aprendizagem (AVA). Com isso, uma grande quantidade de dados educacionais é coletada pelos AVA’s, viabilizando a realização de análises desses dados. Contudo, na literatura acadêmica poucos trabalhos foram conduzidos com o intuito de coletar dados comportamentais dos tutores e utilizar esses dados para realizar a predição de desempenho escolar dos alunos. Portanto, nesta dissertação foi elaborado um framework de características de tutoria correlacionadas ao bom desempenho escolar dos alunos. O framework foi utilizado para guiar a coleta de dados dos tutores, que foram utilizados para realizar a predição de desempenho dos alunos. As características de tutoria incluídas no framework foram extraídas de pesquisas anteriores, que investigaram cada atributo de tutoria, e de atributos de tutoria desejados pela Andragogia. A predição de desempenho dos alunos foi realizada a partir do desenvolvimento de uma extensão da ferramenta Moodle Predicta, que realiza a classificação dos alunos quanto à possível reprovação ou aprovação. A predição de desempenho dos alunos é feita a partir dos dados comportamentais dos alunos e tutores. A implementação da predição foi antecedida de uma análise de performance dos algoritmos classificadores, e o classificador implementado foi o RandomForest, que obteve melhor desempenho segundo a métrica AUC. Os dados educacionais do Moodle da escola judicial de Goiás (EJUG) foram utilizados em um estudo de caso. Duas análises exploratórias de dados foram conduzidas para se conhecer os cursos e investigar as características de tutoria do framework nos tutores da EJUG. Os dados dos tutores da EJUG foram incluídos no modelo de classificação, utilizado na predição de desempenho dos alunos, mostrando que as ações dos tutores podem impactar nas conquistas escolares dos alunos.Fundação de Amparo à Pesquisa do Estado de GoiásporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessPredição desempenhoTutoriaMoodleEaDFrameworkPerformance predictionMentoringMoodleDistance learningFrameworkCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOPredição de desempenho no Moodle usando princípios da andragogiaPerformance prediction in Moodle using andragogy principlesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis19500500500500271843reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertação - Fernando Ribeiro Trindade - 2020.pdfDissertação - Fernando Ribeiro Trindade - 2020.pdfapplication/pdf2624101http://repositorio.bc.ufg.br/tede/bitstreams/89737fbe-657e-4a0a-95a5-ee97e8de48c4/download72dd2149303e11a6dfa5e23f60eda50bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/6715e1cc-199a-47f5-baf3-7de67e9c748d/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.bc.ufg.br/tede/bitstreams/b0083818-667c-4599-ac21-289209aad915/downloade39d27027a6cc9cb039ad269a5db8e34MD52tede/106322020-09-09 15:48:27.828http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.bc.ufg.br:tede/10632http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342020-09-09T18:48:27Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Predição de desempenho no Moodle usando princípios da andragogia
dc.title.alternative.eng.fl_str_mv Performance prediction in Moodle using andragogy principles
title Predição de desempenho no Moodle usando princípios da andragogia
spellingShingle Predição de desempenho no Moodle usando princípios da andragogia
Trindade, Fernando Ribeiro
Predição desempenho
Tutoria
Moodle
EaD
Framework
Performance prediction
Mentoring
Moodle
Distance learning
Framework
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Predição de desempenho no Moodle usando princípios da andragogia
title_full Predição de desempenho no Moodle usando princípios da andragogia
title_fullStr Predição de desempenho no Moodle usando princípios da andragogia
title_full_unstemmed Predição de desempenho no Moodle usando princípios da andragogia
title_sort Predição de desempenho no Moodle usando princípios da andragogia
author Trindade, Fernando Ribeiro
author_facet Trindade, Fernando Ribeiro
author_role author
dc.contributor.advisor1.fl_str_mv Ambrósio, Ana Paula Laboissière
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0900834483461062
dc.contributor.advisor-co1.fl_str_mv Ferreira, Deller James
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/1646629818203057
dc.contributor.referee1.fl_str_mv Rodrigues, Cássio
dc.contributor.referee2.fl_str_mv Siqueira, Sean Wolfgand Matsui
dc.contributor.referee3.fl_str_mv Ferreira, Deller James
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1120552806624688
dc.contributor.author.fl_str_mv Trindade, Fernando Ribeiro
contributor_str_mv Ambrósio, Ana Paula Laboissière
Ferreira, Deller James
Rodrigues, Cássio
Siqueira, Sean Wolfgand Matsui
Ferreira, Deller James
dc.subject.por.fl_str_mv Predição desempenho
Tutoria
Moodle
EaD
Framework
topic Predição desempenho
Tutoria
Moodle
EaD
Framework
Performance prediction
Mentoring
Moodle
Distance learning
Framework
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Performance prediction
Mentoring
Moodle
Distance learning
Framework
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description According to current literature, the teaching skills of tutors are essential to ensure excellence in teaching and, consequently, the interest of students in courses. In online teaching environments, students and tutors interact with each other through the various communication resources provided by virtual learning environments (VLE). With this, a large amount of educational data is collected by AVAS’s, making it possible to carry out analyzes of these data. However, in the academic literature, few studies have been conducted in order to collect behavioral data from tutors and use this data to make the prediction of students' school performance. Therefore, in this dissertation a framework of tutoring characteristics was elaborated correlated to the good school performance of students, and this framework was used to guide the data collection of tutors, which were used to make the prediction of student performance. The tutoring characteristics included in the framework were extracted from previous research, which investigated each tutoring attribute, and from tutoring attributes desired by Andragogy. The prediction of students' performance was carried out from the development of an extension of the Moodle Predicta tool, which performs classification of students as to possible failure or approval. The prediction of student performance is made from the behavioral data of students and tutors. The implementation of the prediction was preceded by a performance analysis of the classifying algorithms, and the implemented classifier was RandomForest, which achieved better performance according to the AUC metric. Educational data from Moodle from the Goiás Judicial School (EJUG) was used in a case study. Two exploratory data analyzes were conducted to learn about the courses and investigate the tutoring characteristics of the framework in EJUG tutors. The data from EJUG tutors were included in the classification model, used to predict student performance, showing that the actions of tutors can impact students' academic achievements.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-09-09T18:48:27Z
dc.date.available.fl_str_mv 2020-09-09T18:48:27Z
dc.date.issued.fl_str_mv 2020-05-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv TRINDADE, F. R. Predição de desempenho no Moodle usando princípios da andragogia. 2020. 147 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2020.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/10632
dc.identifier.dark.fl_str_mv ark:/38995/001300000bvdn
identifier_str_mv TRINDADE, F. R. Predição de desempenho no Moodle usando princípios da andragogia. 2020. 147 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2020.
ark:/38995/001300000bvdn
url http://repositorio.bc.ufg.br/tede/handle/tede/10632
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 19
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 27
dc.relation.cnpq.fl_str_mv 184
dc.relation.sponsorship.fl_str_mv 3
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/89737fbe-657e-4a0a-95a5-ee97e8de48c4/download
http://repositorio.bc.ufg.br/tede/bitstreams/6715e1cc-199a-47f5-baf3-7de67e9c748d/download
http://repositorio.bc.ufg.br/tede/bitstreams/b0083818-667c-4599-ac21-289209aad915/download
bitstream.checksum.fl_str_mv 72dd2149303e11a6dfa5e23f60eda50b
8a4605be74aa9ea9d79846c1fba20a33
e39d27027a6cc9cb039ad269a5db8e34
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1846536722802802688