Predição de desempenho no Moodle usando princípios da andragogia
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/38995/001300000bvdn |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Goiás
|
| Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
| Departamento: |
Instituto de Informática - INF (RG)
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/10632 |
Resumo: | According to current literature, the teaching skills of tutors are essential to ensure excellence in teaching and, consequently, the interest of students in courses. In online teaching environments, students and tutors interact with each other through the various communication resources provided by virtual learning environments (VLE). With this, a large amount of educational data is collected by AVAS’s, making it possible to carry out analyzes of these data. However, in the academic literature, few studies have been conducted in order to collect behavioral data from tutors and use this data to make the prediction of students' school performance. Therefore, in this dissertation a framework of tutoring characteristics was elaborated correlated to the good school performance of students, and this framework was used to guide the data collection of tutors, which were used to make the prediction of student performance. The tutoring characteristics included in the framework were extracted from previous research, which investigated each tutoring attribute, and from tutoring attributes desired by Andragogy. The prediction of students' performance was carried out from the development of an extension of the Moodle Predicta tool, which performs classification of students as to possible failure or approval. The prediction of student performance is made from the behavioral data of students and tutors. The implementation of the prediction was preceded by a performance analysis of the classifying algorithms, and the implemented classifier was RandomForest, which achieved better performance according to the AUC metric. Educational data from Moodle from the Goiás Judicial School (EJUG) was used in a case study. Two exploratory data analyzes were conducted to learn about the courses and investigate the tutoring characteristics of the framework in EJUG tutors. The data from EJUG tutors were included in the classification model, used to predict student performance, showing that the actions of tutors can impact students' academic achievements. |
| id |
UFG-2_c1bcaedbbb6424bd677412d2d8487274 |
|---|---|
| oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/10632 |
| network_acronym_str |
UFG-2 |
| network_name_str |
Repositório Institucional da UFG |
| repository_id_str |
|
| spelling |
Ambrósio, Ana Paula Laboissièrehttp://lattes.cnpq.br/0900834483461062Ferreira, Deller Jameshttp://lattes.cnpq.br/1646629818203057Rodrigues, CássioSiqueira, Sean Wolfgand MatsuiFerreira, Deller Jameshttp://lattes.cnpq.br/1120552806624688Trindade, Fernando Ribeiro2020-09-09T18:48:27Z2020-09-09T18:48:27Z2020-05-15TRINDADE, F. R. Predição de desempenho no Moodle usando princípios da andragogia. 2020. 147 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2020.http://repositorio.bc.ufg.br/tede/handle/tede/10632ark:/38995/001300000bvdnAccording to current literature, the teaching skills of tutors are essential to ensure excellence in teaching and, consequently, the interest of students in courses. In online teaching environments, students and tutors interact with each other through the various communication resources provided by virtual learning environments (VLE). With this, a large amount of educational data is collected by AVAS’s, making it possible to carry out analyzes of these data. However, in the academic literature, few studies have been conducted in order to collect behavioral data from tutors and use this data to make the prediction of students' school performance. Therefore, in this dissertation a framework of tutoring characteristics was elaborated correlated to the good school performance of students, and this framework was used to guide the data collection of tutors, which were used to make the prediction of student performance. The tutoring characteristics included in the framework were extracted from previous research, which investigated each tutoring attribute, and from tutoring attributes desired by Andragogy. The prediction of students' performance was carried out from the development of an extension of the Moodle Predicta tool, which performs classification of students as to possible failure or approval. The prediction of student performance is made from the behavioral data of students and tutors. The implementation of the prediction was preceded by a performance analysis of the classifying algorithms, and the implemented classifier was RandomForest, which achieved better performance according to the AUC metric. Educational data from Moodle from the Goiás Judicial School (EJUG) was used in a case study. Two exploratory data analyzes were conducted to learn about the courses and investigate the tutoring characteristics of the framework in EJUG tutors. The data from EJUG tutors were included in the classification model, used to predict student performance, showing that the actions of tutors can impact students' academic achievements.De acordo com a literatura atual, as habilidades de docência dos tutores são fundamentais para se garantir a excelência no ensino e, consequentemente, o interesse dos alunos nos cursos. Em ambientes de ensino online alunos e tutores interagem entre si por meio dos diversos recursos de comunicação disponibilizados pelos ambientes virtuais de aprendizagem (AVA). Com isso, uma grande quantidade de dados educacionais é coletada pelos AVA’s, viabilizando a realização de análises desses dados. Contudo, na literatura acadêmica poucos trabalhos foram conduzidos com o intuito de coletar dados comportamentais dos tutores e utilizar esses dados para realizar a predição de desempenho escolar dos alunos. Portanto, nesta dissertação foi elaborado um framework de características de tutoria correlacionadas ao bom desempenho escolar dos alunos. O framework foi utilizado para guiar a coleta de dados dos tutores, que foram utilizados para realizar a predição de desempenho dos alunos. As características de tutoria incluídas no framework foram extraídas de pesquisas anteriores, que investigaram cada atributo de tutoria, e de atributos de tutoria desejados pela Andragogia. A predição de desempenho dos alunos foi realizada a partir do desenvolvimento de uma extensão da ferramenta Moodle Predicta, que realiza a classificação dos alunos quanto à possível reprovação ou aprovação. A predição de desempenho dos alunos é feita a partir dos dados comportamentais dos alunos e tutores. A implementação da predição foi antecedida de uma análise de performance dos algoritmos classificadores, e o classificador implementado foi o RandomForest, que obteve melhor desempenho segundo a métrica AUC. Os dados educacionais do Moodle da escola judicial de Goiás (EJUG) foram utilizados em um estudo de caso. Duas análises exploratórias de dados foram conduzidas para se conhecer os cursos e investigar as características de tutoria do framework nos tutores da EJUG. Os dados dos tutores da EJUG foram incluídos no modelo de classificação, utilizado na predição de desempenho dos alunos, mostrando que as ações dos tutores podem impactar nas conquistas escolares dos alunos.Fundação de Amparo à Pesquisa do Estado de GoiásporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessPredição desempenhoTutoriaMoodleEaDFrameworkPerformance predictionMentoringMoodleDistance learningFrameworkCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOPredição de desempenho no Moodle usando princípios da andragogiaPerformance prediction in Moodle using andragogy principlesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis19500500500500271843reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertação - Fernando Ribeiro Trindade - 2020.pdfDissertação - Fernando Ribeiro Trindade - 2020.pdfapplication/pdf2624101http://repositorio.bc.ufg.br/tede/bitstreams/89737fbe-657e-4a0a-95a5-ee97e8de48c4/download72dd2149303e11a6dfa5e23f60eda50bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/6715e1cc-199a-47f5-baf3-7de67e9c748d/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.bc.ufg.br/tede/bitstreams/b0083818-667c-4599-ac21-289209aad915/downloade39d27027a6cc9cb039ad269a5db8e34MD52tede/106322020-09-09 15:48:27.828http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.bc.ufg.br:tede/10632http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342020-09-09T18:48:27Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| dc.title.pt_BR.fl_str_mv |
Predição de desempenho no Moodle usando princípios da andragogia |
| dc.title.alternative.eng.fl_str_mv |
Performance prediction in Moodle using andragogy principles |
| title |
Predição de desempenho no Moodle usando princípios da andragogia |
| spellingShingle |
Predição de desempenho no Moodle usando princípios da andragogia Trindade, Fernando Ribeiro Predição desempenho Tutoria Moodle EaD Framework Performance prediction Mentoring Moodle Distance learning Framework CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Predição de desempenho no Moodle usando princípios da andragogia |
| title_full |
Predição de desempenho no Moodle usando princípios da andragogia |
| title_fullStr |
Predição de desempenho no Moodle usando princípios da andragogia |
| title_full_unstemmed |
Predição de desempenho no Moodle usando princípios da andragogia |
| title_sort |
Predição de desempenho no Moodle usando princípios da andragogia |
| author |
Trindade, Fernando Ribeiro |
| author_facet |
Trindade, Fernando Ribeiro |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Ambrósio, Ana Paula Laboissière |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0900834483461062 |
| dc.contributor.advisor-co1.fl_str_mv |
Ferreira, Deller James |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/1646629818203057 |
| dc.contributor.referee1.fl_str_mv |
Rodrigues, Cássio |
| dc.contributor.referee2.fl_str_mv |
Siqueira, Sean Wolfgand Matsui |
| dc.contributor.referee3.fl_str_mv |
Ferreira, Deller James |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1120552806624688 |
| dc.contributor.author.fl_str_mv |
Trindade, Fernando Ribeiro |
| contributor_str_mv |
Ambrósio, Ana Paula Laboissière Ferreira, Deller James Rodrigues, Cássio Siqueira, Sean Wolfgand Matsui Ferreira, Deller James |
| dc.subject.por.fl_str_mv |
Predição desempenho Tutoria Moodle EaD Framework |
| topic |
Predição desempenho Tutoria Moodle EaD Framework Performance prediction Mentoring Moodle Distance learning Framework CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| dc.subject.eng.fl_str_mv |
Performance prediction Mentoring Moodle Distance learning Framework |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
According to current literature, the teaching skills of tutors are essential to ensure excellence in teaching and, consequently, the interest of students in courses. In online teaching environments, students and tutors interact with each other through the various communication resources provided by virtual learning environments (VLE). With this, a large amount of educational data is collected by AVAS’s, making it possible to carry out analyzes of these data. However, in the academic literature, few studies have been conducted in order to collect behavioral data from tutors and use this data to make the prediction of students' school performance. Therefore, in this dissertation a framework of tutoring characteristics was elaborated correlated to the good school performance of students, and this framework was used to guide the data collection of tutors, which were used to make the prediction of student performance. The tutoring characteristics included in the framework were extracted from previous research, which investigated each tutoring attribute, and from tutoring attributes desired by Andragogy. The prediction of students' performance was carried out from the development of an extension of the Moodle Predicta tool, which performs classification of students as to possible failure or approval. The prediction of student performance is made from the behavioral data of students and tutors. The implementation of the prediction was preceded by a performance analysis of the classifying algorithms, and the implemented classifier was RandomForest, which achieved better performance according to the AUC metric. Educational data from Moodle from the Goiás Judicial School (EJUG) was used in a case study. Two exploratory data analyzes were conducted to learn about the courses and investigate the tutoring characteristics of the framework in EJUG tutors. The data from EJUG tutors were included in the classification model, used to predict student performance, showing that the actions of tutors can impact students' academic achievements. |
| publishDate |
2020 |
| dc.date.accessioned.fl_str_mv |
2020-09-09T18:48:27Z |
| dc.date.available.fl_str_mv |
2020-09-09T18:48:27Z |
| dc.date.issued.fl_str_mv |
2020-05-15 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
TRINDADE, F. R. Predição de desempenho no Moodle usando princípios da andragogia. 2020. 147 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2020. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/10632 |
| dc.identifier.dark.fl_str_mv |
ark:/38995/001300000bvdn |
| identifier_str_mv |
TRINDADE, F. R. Predição de desempenho no Moodle usando princípios da andragogia. 2020. 147 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2020. ark:/38995/001300000bvdn |
| url |
http://repositorio.bc.ufg.br/tede/handle/tede/10632 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.program.fl_str_mv |
19 |
| dc.relation.confidence.fl_str_mv |
500 500 500 500 |
| dc.relation.department.fl_str_mv |
27 |
| dc.relation.cnpq.fl_str_mv |
184 |
| dc.relation.sponsorship.fl_str_mv |
3 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
| dc.publisher.initials.fl_str_mv |
UFG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
| publisher.none.fl_str_mv |
Universidade Federal de Goiás |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
| instname_str |
Universidade Federal de Goiás (UFG) |
| instacron_str |
UFG |
| institution |
UFG |
| reponame_str |
Repositório Institucional da UFG |
| collection |
Repositório Institucional da UFG |
| bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/89737fbe-657e-4a0a-95a5-ee97e8de48c4/download http://repositorio.bc.ufg.br/tede/bitstreams/6715e1cc-199a-47f5-baf3-7de67e9c748d/download http://repositorio.bc.ufg.br/tede/bitstreams/b0083818-667c-4599-ac21-289209aad915/download |
| bitstream.checksum.fl_str_mv |
72dd2149303e11a6dfa5e23f60eda50b 8a4605be74aa9ea9d79846c1fba20a33 e39d27027a6cc9cb039ad269a5db8e34 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
| repository.mail.fl_str_mv |
grt.bc@ufg.br |
| _version_ |
1846536722802802688 |