Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Leonardo Conegundes Martinez
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/ESBF-8SULUR
Resumo: Given an edge weighted undirected graph G and a positive integer d, the Min-degree Constrained Minimum Spanning Tree Problem (MDMST) consists of finding a minimum cost spanning tree T of G, such that each vertex is either a leaf or else has a degree at least d in T. The MDMST was recently proposed and belongs to the class NP-Hard for d >= 3. In this work, we discuss several formulations and optimization algorithms for the problem. We start by introducing two Integer Programming Formulations based on exponentially many undirected and directed subtour breaking constraints and compare the strength of their Linear Programming bounds, both theoretically and computationally. A Branch-and-cut (BC) algorithm and a Local Branching method that uses BC as its inner solver are proposed, both based on the strongest formulation, the directed one. Aiming to overcome the fact that the directed formulation is not symmetric with respect to the Linear Programming bounds, we also present a symmetric and compact reformulation, devised with the application of an intersection reformulation technique to the directed model. The reformulation proved to be much stronger than the previous models, but evaluating its bounds directly by Linear Programming solvers is very time consuming. Therefore, we propose a Lagrangian Relaxation algorithm for approximating them. Attempting to speed up the computation of the Lagrangian dual bounds, we implemented a parallel Subgradient Method. We also introduced a Lagrangian heuristic based on the Local Branching algorithm. With the proposed methods, several new optimality certificates, best lower and upper bounds for MDMST are provided.
id UFMG_4cbfd5df2f31036f1722cd5e46e3cc1f
oai_identifier_str oai:repositorio.ufmg.br:1843/ESBF-8SULUR
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimoComputaçãorelaxação lagrangeanamínimo com restrição de grau mínimobranch-and-cutlocal branchingotimização combinatóriaprogramação paralelaformulações de programação inteiraproblema da árvore geradora de custoGiven an edge weighted undirected graph G and a positive integer d, the Min-degree Constrained Minimum Spanning Tree Problem (MDMST) consists of finding a minimum cost spanning tree T of G, such that each vertex is either a leaf or else has a degree at least d in T. The MDMST was recently proposed and belongs to the class NP-Hard for d >= 3. In this work, we discuss several formulations and optimization algorithms for the problem. We start by introducing two Integer Programming Formulations based on exponentially many undirected and directed subtour breaking constraints and compare the strength of their Linear Programming bounds, both theoretically and computationally. A Branch-and-cut (BC) algorithm and a Local Branching method that uses BC as its inner solver are proposed, both based on the strongest formulation, the directed one. Aiming to overcome the fact that the directed formulation is not symmetric with respect to the Linear Programming bounds, we also present a symmetric and compact reformulation, devised with the application of an intersection reformulation technique to the directed model. The reformulation proved to be much stronger than the previous models, but evaluating its bounds directly by Linear Programming solvers is very time consuming. Therefore, we propose a Lagrangian Relaxation algorithm for approximating them. Attempting to speed up the computation of the Lagrangian dual bounds, we implemented a parallel Subgradient Method. We also introduced a Lagrangian heuristic based on the Local Branching algorithm. With the proposed methods, several new optimality certificates, best lower and upper bounds for MDMST are provided.Universidade Federal de Minas Gerais2019-08-12T21:52:21Z2025-09-09T00:08:20Z2019-08-12T21:52:21Z2012-02-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-8SULURLeonardo Conegundes Martinezinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:08:20Zoai:repositorio.ufmg.br:1843/ESBF-8SULURRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:08:20Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo
title Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo
spellingShingle Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo
Leonardo Conegundes Martinez
Computação
relaxação lagrangeana
mínimo com restrição de grau mínimo
branch-and-cut
local branching
otimização combinatória
programação paralela
formulações de programação inteira
problema da árvore geradora de custo
title_short Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo
title_full Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo
title_fullStr Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo
title_full_unstemmed Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo
title_sort Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo
author Leonardo Conegundes Martinez
author_facet Leonardo Conegundes Martinez
author_role author
dc.contributor.author.fl_str_mv Leonardo Conegundes Martinez
dc.subject.por.fl_str_mv Computação
relaxação lagrangeana
mínimo com restrição de grau mínimo
branch-and-cut
local branching
otimização combinatória
programação paralela
formulações de programação inteira
problema da árvore geradora de custo
topic Computação
relaxação lagrangeana
mínimo com restrição de grau mínimo
branch-and-cut
local branching
otimização combinatória
programação paralela
formulações de programação inteira
problema da árvore geradora de custo
description Given an edge weighted undirected graph G and a positive integer d, the Min-degree Constrained Minimum Spanning Tree Problem (MDMST) consists of finding a minimum cost spanning tree T of G, such that each vertex is either a leaf or else has a degree at least d in T. The MDMST was recently proposed and belongs to the class NP-Hard for d >= 3. In this work, we discuss several formulations and optimization algorithms for the problem. We start by introducing two Integer Programming Formulations based on exponentially many undirected and directed subtour breaking constraints and compare the strength of their Linear Programming bounds, both theoretically and computationally. A Branch-and-cut (BC) algorithm and a Local Branching method that uses BC as its inner solver are proposed, both based on the strongest formulation, the directed one. Aiming to overcome the fact that the directed formulation is not symmetric with respect to the Linear Programming bounds, we also present a symmetric and compact reformulation, devised with the application of an intersection reformulation technique to the directed model. The reformulation proved to be much stronger than the previous models, but evaluating its bounds directly by Linear Programming solvers is very time consuming. Therefore, we propose a Lagrangian Relaxation algorithm for approximating them. Attempting to speed up the computation of the Lagrangian dual bounds, we implemented a parallel Subgradient Method. We also introduced a Lagrangian heuristic based on the Local Branching algorithm. With the proposed methods, several new optimality certificates, best lower and upper bounds for MDMST are provided.
publishDate 2012
dc.date.none.fl_str_mv 2012-02-13
2019-08-12T21:52:21Z
2019-08-12T21:52:21Z
2025-09-09T00:08:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/ESBF-8SULUR
url https://hdl.handle.net/1843/ESBF-8SULUR
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414084724948992