Uso da inteligência artificial aplicada ao diagnóstico bucal

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Araújo, Eduarda Gomes Onofre de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Odontologia
Programa de Pós-Graduação em Odontologia
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/36767
Resumo: The objective of this dissertation was to address and elucidate the use of Artificial Intelligence in the diagnosis of oral lesions and, for this purpose, two work plans were developed. The first plan consisted of preparing and developing a bibliometric review with the objective of quantifying, analyzing and evaluating the scientific academic production on the use of Artificial Intelligence for the diagnosis of oral lesions. The databases chosen to conduct the review were: Medline via PubMed, Scopus, Web of Science and Cochrane Library. For all databases, a search strategy was defined based on the terms of the Medical Subject Headings, synonyms and relevant free terms, combining them with Boolean operators. The results of the searches in the databases were exported for bibliometric analysis through the R and RStudio software, using the Bibliometrix package. In total, 3,858 studies were obtained in the databases. 902 duplicate files were removed, leaving 2,956 publications for content evaluation. After applying the eligibility criteria and excluding studies that were not in line with the topic of interest, 334 articles remained for bibliometric analysis. In the second work plan, a study was carried out to evaluate the performance of the AI Oral Diagnosis Helper (AODH) virtual assistant, developed using the ChatGPT™ platform (versions 4 and 4o). Thirty clinical cases were selected for evaluation by two specialists in Stomatology and the AODH. The diagnoses and treatment suggestions were compared to a gold standard specialist. Agreement rates and accuracy were calculated using Fleiss's Kappa with a 95% confidence interval, using RStudio. The AODH with version 4 correctly diagnosed 22 of 30 cases (73.3%), while the AODH based on version 4o correctly identified 24 cases (80%). Fleiss's kappa indicated substantial reliability between the AODH and the specialists (K = 0.79). With the development of work plans, it is possible to conclude that the integration of Artificial Intelligence in the area of oral diagnosis can enrich learning and clinical practice, as long as it is used cautiously and consciously, serving as support for students and professionals.
id UFPB_6040d2a25e474ffaab80166788c4f332
oai_identifier_str oai:repositorio.ufpb.br:123456789/36767
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Uso da inteligência artificial aplicada ao diagnóstico bucalUse of artificial intelligence applied to oral diagnosisInteligência artificialDiagnóstico bucalChatGPTArtificial intelligenceOral diagnosisCNPQ::CIENCIAS DA SAUDE::ODONTOLOGIAThe objective of this dissertation was to address and elucidate the use of Artificial Intelligence in the diagnosis of oral lesions and, for this purpose, two work plans were developed. The first plan consisted of preparing and developing a bibliometric review with the objective of quantifying, analyzing and evaluating the scientific academic production on the use of Artificial Intelligence for the diagnosis of oral lesions. The databases chosen to conduct the review were: Medline via PubMed, Scopus, Web of Science and Cochrane Library. For all databases, a search strategy was defined based on the terms of the Medical Subject Headings, synonyms and relevant free terms, combining them with Boolean operators. The results of the searches in the databases were exported for bibliometric analysis through the R and RStudio software, using the Bibliometrix package. In total, 3,858 studies were obtained in the databases. 902 duplicate files were removed, leaving 2,956 publications for content evaluation. After applying the eligibility criteria and excluding studies that were not in line with the topic of interest, 334 articles remained for bibliometric analysis. In the second work plan, a study was carried out to evaluate the performance of the AI Oral Diagnosis Helper (AODH) virtual assistant, developed using the ChatGPT™ platform (versions 4 and 4o). Thirty clinical cases were selected for evaluation by two specialists in Stomatology and the AODH. The diagnoses and treatment suggestions were compared to a gold standard specialist. Agreement rates and accuracy were calculated using Fleiss's Kappa with a 95% confidence interval, using RStudio. The AODH with version 4 correctly diagnosed 22 of 30 cases (73.3%), while the AODH based on version 4o correctly identified 24 cases (80%). Fleiss's kappa indicated substantial reliability between the AODH and the specialists (K = 0.79). With the development of work plans, it is possible to conclude that the integration of Artificial Intelligence in the area of oral diagnosis can enrich learning and clinical practice, as long as it is used cautiously and consciously, serving as support for students and professionals.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO objetivo desta dissertação foi abordar e elucidar o uso da Inteligência Artificial no diagnóstico de lesões bucais e, para isso, foram desenvolvidos dois planos de trabalho. O primeiro plano consistiu em elaborar e desenvolver uma revisão bibliométrica com o objetivo de quantificar, analisar e avaliar a produção acadêmica científica sobre o uso da Inteligência Artificial para o diagnóstico de lesões bucais. As bases de dados escolhidas para conduzir a revisão foram: Medline via PubMed, Scopus, Web of Science e Cochrane Library. Para todas as bases de dados, foi definida uma estratégia de busca baseada nos termos do Medical Subject Headings, sinônimos e termos livres relevantes, combinando-os com os operadores booleanos. Os resultados das buscas nas bases de dados foram exportados para a realização da análise bibliométrica através dos softwares R e RStudio, utilizando o pacote Bibliometrix. Ao todo, foram obtidos 3.858 estudos nas bases de dados. Foram removidos 902 arquivos duplicados, restando 2.956 publicações para avaliação de conteúdo. Após a aplicação dos critérios de elegibilidade e a exclusão dos estudos que não estavam de acordo com a temática de interesse, restaram 334 artigos para análise bibliométrica. No segundo plano de trabalho, foi realizado um estudo para avaliar o desempenho do assistente virtual AI Oral Diagnosis Helper (AODH), desenvolvido utilizando-se a plataforma ChatGPT™ (versões 4 e 4o). Foram selecionados 30 casos clínicos para avaliação por dois especialistas em Estomatologia e pelo AODH. Os diagnósticos e sugestões de tratamento foram comparados a um especialista padrão-ouro. As taxas de concordância e a precisão foram calculadas usando o Kappa de Fleiss com um intervalo de confiança de 95%, utilizando o RStudio. O AODH com a versão 4 diagnosticou corretamente 22 de 30 casos (73,3%), enquanto o AODH baseado na versão 4o identificou corretamente 24 casos (80%). O kappa de Fleiss indicou confiabilidade substancial entre o AODH e os especialistas (K = 0,79). Com o desenvolvimento dos planos de trabalho, é possível concluir que a integração da Inteligência Artificial na área do diagnóstico bucal pode enriquecer o aprendizado e a prática clínica, desde que utilizada de forma cautelosa e consciente, servindo de apoio aos estudantes e profissionais.Universidade Federal da ParaíbaBrasilOdontologiaPrograma de Pós-Graduação em OdontologiaUFPBBonan, Paulo Rogério Ferretihttp://lattes.cnpq.br/4201967424037508Araújo, Eduarda Gomes Onofre de2025-12-09T13:23:58Z2025-02-262025-12-09T13:23:58Z2024-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/36767porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2025-12-10T06:12:28Zoai:repositorio.ufpb.br:123456789/36767Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| bdtd@biblioteca.ufpb.bropendoar:2025-12-10T06:12:28Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Uso da inteligência artificial aplicada ao diagnóstico bucal
Use of artificial intelligence applied to oral diagnosis
title Uso da inteligência artificial aplicada ao diagnóstico bucal
spellingShingle Uso da inteligência artificial aplicada ao diagnóstico bucal
Araújo, Eduarda Gomes Onofre de
Inteligência artificial
Diagnóstico bucal
ChatGPT
Artificial intelligence
Oral diagnosis
CNPQ::CIENCIAS DA SAUDE::ODONTOLOGIA
title_short Uso da inteligência artificial aplicada ao diagnóstico bucal
title_full Uso da inteligência artificial aplicada ao diagnóstico bucal
title_fullStr Uso da inteligência artificial aplicada ao diagnóstico bucal
title_full_unstemmed Uso da inteligência artificial aplicada ao diagnóstico bucal
title_sort Uso da inteligência artificial aplicada ao diagnóstico bucal
author Araújo, Eduarda Gomes Onofre de
author_facet Araújo, Eduarda Gomes Onofre de
author_role author
dc.contributor.none.fl_str_mv Bonan, Paulo Rogério Ferreti
http://lattes.cnpq.br/4201967424037508
dc.contributor.author.fl_str_mv Araújo, Eduarda Gomes Onofre de
dc.subject.por.fl_str_mv Inteligência artificial
Diagnóstico bucal
ChatGPT
Artificial intelligence
Oral diagnosis
CNPQ::CIENCIAS DA SAUDE::ODONTOLOGIA
topic Inteligência artificial
Diagnóstico bucal
ChatGPT
Artificial intelligence
Oral diagnosis
CNPQ::CIENCIAS DA SAUDE::ODONTOLOGIA
description The objective of this dissertation was to address and elucidate the use of Artificial Intelligence in the diagnosis of oral lesions and, for this purpose, two work plans were developed. The first plan consisted of preparing and developing a bibliometric review with the objective of quantifying, analyzing and evaluating the scientific academic production on the use of Artificial Intelligence for the diagnosis of oral lesions. The databases chosen to conduct the review were: Medline via PubMed, Scopus, Web of Science and Cochrane Library. For all databases, a search strategy was defined based on the terms of the Medical Subject Headings, synonyms and relevant free terms, combining them with Boolean operators. The results of the searches in the databases were exported for bibliometric analysis through the R and RStudio software, using the Bibliometrix package. In total, 3,858 studies were obtained in the databases. 902 duplicate files were removed, leaving 2,956 publications for content evaluation. After applying the eligibility criteria and excluding studies that were not in line with the topic of interest, 334 articles remained for bibliometric analysis. In the second work plan, a study was carried out to evaluate the performance of the AI Oral Diagnosis Helper (AODH) virtual assistant, developed using the ChatGPT™ platform (versions 4 and 4o). Thirty clinical cases were selected for evaluation by two specialists in Stomatology and the AODH. The diagnoses and treatment suggestions were compared to a gold standard specialist. Agreement rates and accuracy were calculated using Fleiss's Kappa with a 95% confidence interval, using RStudio. The AODH with version 4 correctly diagnosed 22 of 30 cases (73.3%), while the AODH based on version 4o correctly identified 24 cases (80%). Fleiss's kappa indicated substantial reliability between the AODH and the specialists (K = 0.79). With the development of work plans, it is possible to conclude that the integration of Artificial Intelligence in the area of oral diagnosis can enrich learning and clinical practice, as long as it is used cautiously and consciously, serving as support for students and professionals.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-31
2025-12-09T13:23:58Z
2025-02-26
2025-12-09T13:23:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/36767
url https://repositorio.ufpb.br/jspui/handle/123456789/36767
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Odontologia
Programa de Pós-Graduação em Odontologia
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Odontologia
Programa de Pós-Graduação em Odontologia
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| bdtd@biblioteca.ufpb.br
_version_ 1854304287871467520