Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Fisica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/40940 |
Resumo: | The Painlevé transcendent functions are important tools in theoretical physics, they appear in a variety of physical systems going from quantum integrable systems to random matrix theory. The accessory parameter problem for ODEs, which has connections to black hole scattering problem, can be solved by using the connection between the Painlevé VI transcendent with isomonodromic deformations of a linear ordinary differential equation. In this case, the isomonodromic V I function plays a major role, and finding its roots is equivalent to solving the accessory parameter problem. The V I function can be expressed as a function of a Fredholm determinant. In this dissertation, we will discuss the two main different methods of calculation of the V I in the Fredholm determinant form. We will also present how to construct codes for both methods and analyze them in order to understand which one is the most numerically efficient to find the roots of the V I function. |
id |
UFPE_0a471fda1d08d9fb3da29271333e979f |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/40940 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
|
spelling |
ANTONIO JUNIOR, Ériton Araujohttp://lattes.cnpq.br/5401411536820923http://lattes.cnpq.br/8859998369703134CUNHA, Bruno Geraldo Carneiro da2021-08-11T22:02:09Z2021-08-11T22:02:09Z2020-03-31ANTONIO JÚNIOR, Ériton Araujo. Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant. 2020. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/40940The Painlevé transcendent functions are important tools in theoretical physics, they appear in a variety of physical systems going from quantum integrable systems to random matrix theory. The accessory parameter problem for ODEs, which has connections to black hole scattering problem, can be solved by using the connection between the Painlevé VI transcendent with isomonodromic deformations of a linear ordinary differential equation. In this case, the isomonodromic V I function plays a major role, and finding its roots is equivalent to solving the accessory parameter problem. The V I function can be expressed as a function of a Fredholm determinant. In this dissertation, we will discuss the two main different methods of calculation of the V I in the Fredholm determinant form. We will also present how to construct codes for both methods and analyze them in order to understand which one is the most numerically efficient to find the roots of the V I function.CNPqAs funções transcendentais de Painlevé são ferramentas importantes dentro da física teórica, elas aparecem em uma variedade de sistemas físicos indo de sistemas quânticos integráveis à teoria de matrizes aleatórias. O problema dos parâmetros acessórios, que tem conexões com o problema de espalhamento em buracos negros, pode ser resolvido usando a conexão entre as funções transcendentais de Painlevé com as transformações isomonodrômicas em uma equação diferencial ordinária linear. Neste caso a função isomonodrômica V I é de grande importância, e encontrar as raízes de tal função é equivalente a resolver o problema de parâmetro acessório. A função V I pode ser expressada em termos de um determinante de Fredholm. Nesta dissertação serão discutidos os dois principais métodos de se calcular a função V I na sua forma de determinante de Fredholm. Também será apresentado como construir códigos utilizando ambos os métodos e tais códigos serão analisados de maneira a se entender qual dos dois é mais numericamente eficiente para o cálculo das raízes da função V I.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessPainlevé VIDeterminante de FredholmProblema de Riemann-HilbertProblema de parâmetro acessórioImproving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinantinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Ériton Araujo Antonio Júnior.pdfDISSERTAÇÃO Ériton Araujo Antonio Júnior.pdfapplication/pdf2062642https://repositorio.ufpe.br/bitstream/123456789/40940/1/DISSERTA%c3%87%c3%83O%20%c3%89riton%20Araujo%20Antonio%20J%c3%banior.pdf38e3388f2ed5a97aada9a8750884ffdaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/40940/3/license.txtbd573a5ca8288eb7272482765f819534MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/40940/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52TEXTDISSERTAÇÃO Ériton Araujo Antonio Júnior.pdf.txtDISSERTAÇÃO Ériton Araujo Antonio Júnior.pdf.txtExtracted texttext/plain156024https://repositorio.ufpe.br/bitstream/123456789/40940/4/DISSERTA%c3%87%c3%83O%20%c3%89riton%20Araujo%20Antonio%20J%c3%banior.pdf.txtcd0ba7736b399acda30aa866ac65ba68MD54THUMBNAILDISSERTAÇÃO Ériton Araujo Antonio Júnior.pdf.jpgDISSERTAÇÃO Ériton Araujo Antonio Júnior.pdf.jpgGenerated Thumbnailimage/jpeg1244https://repositorio.ufpe.br/bitstream/123456789/40940/5/DISSERTA%c3%87%c3%83O%20%c3%89riton%20Araujo%20Antonio%20J%c3%banior.pdf.jpge98b814bb2a154cd4418c05d605009e5MD55123456789/409402021-08-12 02:14:40.164oai:repositorio.ufpe.br:123456789/40940TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212021-08-12T05:14:40Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant |
title |
Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant |
spellingShingle |
Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant ANTONIO JUNIOR, Ériton Araujo Painlevé VI Determinante de Fredholm Problema de Riemann-Hilbert Problema de parâmetro acessório |
title_short |
Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant |
title_full |
Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant |
title_fullStr |
Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant |
title_full_unstemmed |
Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant |
title_sort |
Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant |
author |
ANTONIO JUNIOR, Ériton Araujo |
author_facet |
ANTONIO JUNIOR, Ériton Araujo |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5401411536820923 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8859998369703134 |
dc.contributor.author.fl_str_mv |
ANTONIO JUNIOR, Ériton Araujo |
dc.contributor.advisor1.fl_str_mv |
CUNHA, Bruno Geraldo Carneiro da |
contributor_str_mv |
CUNHA, Bruno Geraldo Carneiro da |
dc.subject.por.fl_str_mv |
Painlevé VI Determinante de Fredholm Problema de Riemann-Hilbert Problema de parâmetro acessório |
topic |
Painlevé VI Determinante de Fredholm Problema de Riemann-Hilbert Problema de parâmetro acessório |
description |
The Painlevé transcendent functions are important tools in theoretical physics, they appear in a variety of physical systems going from quantum integrable systems to random matrix theory. The accessory parameter problem for ODEs, which has connections to black hole scattering problem, can be solved by using the connection between the Painlevé VI transcendent with isomonodromic deformations of a linear ordinary differential equation. In this case, the isomonodromic V I function plays a major role, and finding its roots is equivalent to solving the accessory parameter problem. The V I function can be expressed as a function of a Fredholm determinant. In this dissertation, we will discuss the two main different methods of calculation of the V I in the Fredholm determinant form. We will also present how to construct codes for both methods and analyze them in order to understand which one is the most numerically efficient to find the roots of the V I function. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-03-31 |
dc.date.accessioned.fl_str_mv |
2021-08-11T22:02:09Z |
dc.date.available.fl_str_mv |
2021-08-11T22:02:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ANTONIO JÚNIOR, Ériton Araujo. Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant. 2020. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2020. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/40940 |
identifier_str_mv |
ANTONIO JÚNIOR, Ériton Araujo. Improving the computation of the τVI Painlevé function using the quadrature method for the fredholm determinant. 2020. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2020. |
url |
https://repositorio.ufpe.br/handle/123456789/40940 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Fisica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/40940/1/DISSERTA%c3%87%c3%83O%20%c3%89riton%20Araujo%20Antonio%20J%c3%banior.pdf https://repositorio.ufpe.br/bitstream/123456789/40940/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/40940/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/40940/4/DISSERTA%c3%87%c3%83O%20%c3%89riton%20Araujo%20Antonio%20J%c3%banior.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/40940/5/DISSERTA%c3%87%c3%83O%20%c3%89riton%20Araujo%20Antonio%20J%c3%banior.pdf.jpg |
bitstream.checksum.fl_str_mv |
38e3388f2ed5a97aada9a8750884ffda bd573a5ca8288eb7272482765f819534 e39d27027a6cc9cb039ad269a5db8e34 cd0ba7736b399acda30aa866ac65ba68 e98b814bb2a154cd4418c05d605009e5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1813709333761884160 |